Abstract

The hydrodynamic performance of composite wavy submerged porous plate attached to a wall is investigated using numerical method multi-domain boundary element method in the linearized water wave theory in which wave past the porous barriers are modeled using Darcy’s law. Effect of the presence of wall on the hydrodynamic parameters like reflection coefficient, dimensionless wave height, wave force and moment acting on the composite wavy porous structure, and horizontal force on the vertical rigid wall is analyzed for various physical parameters like the number of ripple wavelength, structural porosity, submergence depth, and relative amplitude of composite wavy porous plate. The study demonstrates that the efficiency of hydrodynamic characteristics of the composite wavy porous plate attached to the wall is better compared to a horizontal porous plate attached to the wall of the same applicability conditions (around 27% reduction in wave reflection). Moreover, optimum performance of this kind of breakwater system is increased by considering the lower submergence, higher relative ripple amplitude, appropriate relative amplitude, and suitable moderate porosity of the structure in the range of wavenumber 1 < k0h < 5. Dimensionless wave height, horizontal load on the impermeable wall are reduced to zero, while substantial minimization of vertical load on the structure with suitable consideration of the other influencing parameters of porosity Gp = 0.3, relative amplitude Ds/h = 0.1, relative ripple wavelength m > 3, and submergence depth h1/h = 0.3. The present structural arrangement will be useful for attenuating wave effects on the sea wall.

References

1.
Heins
,
A. E.
,
1950
, “
Water Waves Over a Channel of Finite Depth With a Submerged Plane Barrier
,”
Canad. J. Math.
,
2
, pp.
210
222
.
2.
Burke
,
J. E.
,
1964
, “
Scattering of Surface Waves on an Infinitely Deep Fluid
,”
J. Math. Phys.
,
5
(
6
), pp.
805
819
.
3.
Patarapanich
,
M.
,
1984
, “
Maximum and Zero Reflection From Submerged Plate
,”
J. Waterw. Port, Coast. Ocean Eng. J.
,
110
(
2
), pp.
171
181
.
4.
Cho
,
Y.-S.
,
2000
, “
Bragg Resonant Reflection of Obliquely Incident Water Waves
,”
Water Eng. Res.
,
1
(
1
), pp.
75
81
.
5.
Kojima
,
H.
,
Ijima
,
T.
, and
Yoshida
,
A.
,
1990
, “
Decomposition and Interception of Long Waves by a Submerged Horizontal Plate
,”
Proceedings of the 22nd International Conference on Coastal Engineering, Part 2
,
Delft, The Netherlands
, pp.
1228
1241
.
6.
Neelamani
,
S.
, and
Reddy
,
M. S.
,
1992
, “
Wave Transmission and Reflection Characteristics of a Rigid Surface and Submerged Horizontal Plate
,”
Ocean. Eng.
,
19
(
4
), pp.
327
341
.
7.
Yu
,
X.
, and
Chwang
,
A. T.
,
1994
, “
Water Waves Above Submerged Porous Plate
,”
J. Eng. Mech.
,
120
(
6
), pp.
1270
1282
.
8.
Cho
,
I. H.
,
Koh
,
H. J.
,
Kim
,
J. R.
, and
Kim
,
M. H.
,
2013
, “
Wave Scattering by Dual Submerged Horizontal Porous Plates
,”
Ocean. Eng.
,
73
, pp.
149
158
.
9.
Davies
,
A. G.
, and
Heathershaw
,
A. D.
,
1984
, “
Surface-Wave Propagation Over Sinusoidally Varying Topography
,”
J. Fluid. Mech.
,
144
, pp.
419
443
.
10.
Guazzelli
,
E.
,
Rey
,
V.
, and
Belzons
,
M.
,
1992
, “
Higher-Order Bragg Reflection of Gravity Surface Waves by Periodic Beds
,”
J. Fluid. Mech.
,
245
, pp.
301
317
.
11.
Zhang
,
L.
,
Kim
,
M. H.
,
Zhang
,
J.
, and
Edge
,
B. L.
,
1999
, “
Hybrid Model for Bragg Scattering of Water Waves by Steep Multiply-Sinusoidal Bars
,”
J. Coastal Res.
,
15
(
2
), pp.
486
495
.
12.
Jeon
,
C.-H.
, and
Cho
,
Y.-S.
,
2006
, “
Bragg Reflection of Sinusoidal Waves Due to Trapezoidal Submerged Breakwaters
,”
Ocean. Eng.
,
33
(
14–15
), pp.
2067
2082
.
13.
Kar
,
P.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2018
, “
Scattering of Surface Gravity Waves Over a Pair of Trenches
,”
Appl. Math. Model.
,
62
, pp.
303
320
.
14.
Li
,
A.-j.
,
Liu
,
Y.
,
Liu
,
X.
, and
Zhao
,
Y.
,
2020
, “
Analytical and Experimental Studies on Bragg Scattering of Water Waves by Multiple Submerged Perforated Semi-Circular Breakwaters
,”
Ocean. Eng.
,
209
, p.
107419
.
15.
Liu
,
W.
,
Liu
,
Y.
, and
Zhao
,
X.
,
2019
, “
Numerical Study of Bragg Reflection of Regular Water Waves Over Fringing Reefs Based on a Boussinesq Model
,”
Ocean. Eng.
,
190
, p.
106415
.
16.
Parsons
,
N. F.
, and
Martin
,
P. A.
,
1994
, “
Scattering of Water Waves by Submerged Curved Plates and by Surface-Piercing Flat Plates
,”
Appl. Ocean. Res.
,
16
(
3
), pp.
129
139
.
17.
Wang
,
G.
,
Ren
,
B.
, and
Wang
,
Y.
,
2016
, “
Experimental Study on Hydrodynamic Performance of Arc Plate Breakwater
,”
Ocean. Eng.
,
111
, pp.
593
601
.
18.
Yueh
,
C.-Y.
,
Chuang
,
S.-H.
, and
Wen
,
C.-C.
,
2018
, “
Bragg Reflection of Water Waves Due to Submerged Wavy Plate Breakwater
,”
J. Hydro-Environ. Res.
,
21
, pp.
52
59
.
19.
Yueh
,
C.-Y.
,
Chuang
,
S.-H.
, and
Wen
,
C.-C.
,
2016
, “
Wave Scattering by Submerged Composite Wavy Plate Breakwaters Using a Dual Bem
,”
Ocean. Eng.
,
124
, pp.
192
203
.
20.
Mohapatra
,
A. K.
,
Vijay
,
K. G.
, and
Sahoo
,
T.
,
2020
, “
Bragg Scattering of Surface Gravity Waves by a Submerged Wavy Porous Plate
,”
Ocean. Eng.
,
219
, p.
108273
.
21.
Vijay
,
K. G.
,
He
,
S. Y.
,
Zhao
,
Y.
,
Liu
,
Y.
, and
Sahoo
,
T.
,
2020
, “
Gravity Wave Interaction with a Submerged Wavy Porous Plate
,”
Ships Offshore Struct.
,
15
(
sup1
), pp.
S123
S133
.
22.
Vijay
,
K.
,
Nishad
,
C. S.
,
Neelamani
,
S.
, and
Sahoo
,
T.
,
2021
, “
Wave Interaction With Multiple Wavy Porous Barriers Using Dual Boundary Element Method
,”
Eng. Anal. Boundary Elements
,
122
, pp.
176
189
.
23.
Wu
,
J.
,
Wan
,
Z.
, and
Fang
,
Y.
,
1998
, “
Wave Reflection by a Vertical Wall With a Horizontal Submerged Porous Plate
,”
Ocean. Eng.
,
25
(
9
), pp.
767
779
.
24.
Yip
,
T. L.
, and
Chwang
,
A. T.
,
2000
, “
Perforated Wall Breakwater With Internal Horizontal Plate
,”
J. Eng. Mech.
,
126
(
5
), pp.
533
538
.
25.
Liu
,
Y.
,
Li
,
Y.-C.
, and
Teng
,
B.
,
2007
, “
Wave Interaction With a Perforated Wall Breakwater With a Submerged Horizontal Porous Plate
,”
Ocean. Eng.
,
34
(
17–18
), pp.
2364
2373
.
26.
Hu
,
H. H.
, and
Wang
,
K. -H.
,
2005
, “
Damping Effect on Waves Propagating Past a Submerged Horizontal Plate and a Vertical Porous Wall
,”
J. Eng. Mech.
,
131
(
4
), pp.
427
437
.
27.
Yip
,
T. L.
,
Sahoo
,
T.
, and
Chwang
,
A. T.
,
2002
, “
Trapping of Surface Waves by Porous and Flexible Structures
,”
Wave Motion
,
35
(
1
), pp.
41
54
.
28.
Kaligatla
,
R. B.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2015
, “
Trapping of Surface Gravity Waves by a Vertical Flexible Porous Plate Near a Wall
,”
Zeitschrift für Angewandte Mathematik und Physik
,
66
(
5
), pp.
2677
2702
.
29.
Mondal
,
R.
, and
Takagi
,
K.
,
2019
, “
Wave Scattering by a Fixed Submerged Platform Over a Step Bottom
,”
Proc. Inst. Mech. Eng. Part M. J. Eng. Maritime Environ.
,
233
(
1
), pp.
93
107
.
30.
Molin
,
B.
,
2001
, “
Numerical and Physical Wavetanks: Making Them Fit
,”
Ship Technol. Res.
,
48
(
1
), pp.
2
22
.
31.
Kee
,
S.
,
Lee
,
S.-H.
, and
Ko
,
J.-S.
,
2006
, “
Submerged Porous Plate Wave Absorber
,”
Proceedings of the Sixteenth International Offshore and Polar Engineering Conference
,
San Francisco, CA
,
International Society of Offshore and Polar Engineers
.
32.
Singla
,
S.
,
Sahoo
,
T.
,
Martha
,
S. C.
, and
Behera
,
H.
,
2019
, “
Effect of a Floating Permeable Plate on the Hydroelastic Response of a Very Large Floating Structure
,”
J. Eng. Math.
,
116
(
1
), pp.
49
72
.
33.
Cho
,
I. H.
, and
Kim
,
M. H.
,
2008
, “
Wave Absorbing System Using Inclined Perforated Plates
,”
J. Fluid. Mech.
,
608
, pp.
1
20
.
34.
Katsikadelis
,
J. T.
,
2002
,
Boundary Elements: Theory and Applications
,
Elsevier
,
UK
.
35.
Nishad
,
C. S.
,
Chandra
,
A.
, and
Sekhar
,
G. P. R.
,
2016
, “
Flows in Slip-Patterned Micro-Channels Using Boundary Element Methods
,”
Eng. Anal. Boundary Elements
,
73
, pp.
95
102
.
You do not currently have access to this content.