Abstract

We investigate the effectiveness of a porous box in attenuating the structural response of a very large floating structure (VLFS). Assuming the water depth to be finite and small amplitude water wave theory, the physical problem is formulated by employing Darcy’s law for flow past a porous structure. The boundary value problem is reduced to a system of linear algebraic equations with the aid of matched eigenfunction expansion method. Further, these simultaneous equations are solved numerically to compute physical quantities. The mathematical model is validated through a comparison with the theoretical results available in the literature. The reflection, transmission, and dissipation coefficients, elastic plate deflection, forces acting on the box, and free-surface elevation are computed. The reflection, transmission, and dissipation coefficients exhibit an oscillatory pattern for large values of wavenumber irrespective of the structural parameters of the box. It is highlighted that a porous box with moderate values of the porous-effect parameter is effective in reducing strain and shear force on the VLFS. Further, the results on elevation and VLFS deflection depict that the suitable porous-effect parameter values for the box reduce the resultant wave amplitude of the elastic plate deflection as well as the amplitude in the lee side of the VLFS. The study reveals that the width and height of the porous box are critical toward the trapping of incident waves inside the box and dissipating the maximum amount of incident wave energy in reduction of wave transmission in the lee side of the structure and thereby attenuating the structural response of the VLFS.

References

1.
Wang
,
C.
, and
Tay
,
Z.
,
2011
, “
Very Large Floating Structures: Applications, Research and Development
,”
Procedia. Eng.
,
14
(
11–12
), pp.
62
72
.
2.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean Eng.
,
109
, pp.
677
690
.
3.
Mandal
,
S.
,
Sahoo
,
T.
, and
Chakrabarti
,
A.
,
2017
, “
Characteristics of Eigen-System for Flexural Gravity Wave Problems
,”
Geophys. Astrophys. Fluid Dyn.
,
111
(
4
), pp.
249
281
.
4.
Korobkin
,
A.
,
Părău
,
E. I.
, and
Vanden-Broeck
,
J.-M.
,
2011
, “
The Mathematical Challenges and Modelling of Hydroelasticity
.”
5.
Suzuki
,
H.
,
2005
, “
Overview of Megafloat: Concept, Design Criteria, Analysis, and Design
,”
Marine Struct.
,
18
(
2
), pp.
111
132
.
6.
Wang
,
C.
,
Tay
,
Z.
,
Takagi
,
K.
, and
Utsunomiya
,
T.
,
2010
, “
Literature Review of Methods for Mitigating Hydroelastic Response of VLFS Under Wave Action
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030802
.
7.
Ohta
,
H.
,
Torii
,
T.
,
Hayashi
,
N.
,
Watanabe
,
E.
,
Utsunomiya
,
T.
,
Sekita
,
K.
, and
Sunahara
,
S.
,
1999
, “
Effect of Attachment of a Horizontal/Vertical Plate on the Wave Response of a VLFS
,”
Proceedings of the Third International Workshop on Very Large Floating Structure
,
Honolulu, HI
,
Apr. 11–14
, pp.
256
274
.
8.
Watanabe
,
E.
,
Utsunomiya
,
T.
,
Kuramoto
,
M.
,
Ohta
,
H.
,
Torii
,
T.
, and
Hayashi
,
N.
,
2003
, “
Wave Response Analysis of VLFS With an Attached Submerged Plate
,”
Int. J. Offshore Polar Eng.
,
13
(
3
), pp.
190
197
.
9.
Van Kessel
,
J.
, and
Pinkster
,
J.
,
2007
, “
The Effect of Aircushion Division on the Motions of Large Floating Structures
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15
, Vol.
42703
, pp.
677
686
.
10.
Karperaki
,
A.
,
Belibassakis
,
K.
, and
Papathanasiou
,
T.
,
2016
, “
Time-Domain, Shallow-Water Hydroelastic Analysis of VLFS Elastically Connected to the Seabed
,”
Marine Struct.
,
48
(
26
), pp.
33
51
.
11.
Nguyen
,
H.
,
Dai
,
J.
,
Wang
,
C.
,
Ang
,
K.
, and
Luong
,
V.
,
2018
, “
Reducing Hydroelastic Responses of Pontoon-Type VLFS Using Vertical Elastic Mooring Lines
,”
Marine Struct.
,
59
, pp.
251
270
.
12.
Neelamani
,
S.
, and
Rajendran
,
R.
,
2002
, “
Wave Interaction With ⊥-type Breakwaters
,”
Ocean Eng.
,
29
(
2
), pp.
561
581
.
13.
Neelamani
,
S.
, and
Rajendran
,
R.
,
2002
, “
Wave Interaction With T-type Breakwaters
,”
Ocean Eng.
,
29
(
2
), pp.
151
175
.
14.
Günaydın
,
K.
, and
Kabdaşlı
,
M.
,
2004
, “
Performance of Solid and Perforated U-type Breakwaters Under Regular and Irregular Waves
,”
Ocean Eng.
,
31
(
11–12
), pp.
1377
1405
.
15.
Nishad
,
C.
,
Vijay
,
K.
,
Neelamani
,
S.
, and
Chen
,
J.
,
2021
, “
Dual BEM for Wave Scattering by an H-type Porous Barrier With Nonlinear Pressure Drop
,”
Eng. Anal. Bound. Elem.
,
131
(
2
), pp.
280
294
.
16.
Deng
,
Z.
,
Wang
,
L.
,
Zhao
,
X.
, and
Huang
,
Z.
,
2019
, “
Hydrodynamic Performance of a T-shaped Floating Breakwater
,”
Appl. Ocean Res.
,
82
, pp.
325
336
.
17.
Koutandos
,
E.
, and
Prinos
,
P.
,
2011
, “
Hydrodynamic Characteristics of Semi-Immersed Breakwater With an Attached Porous Plate
,”
Ocean Eng.
,
38
(
1
), pp.
34
48
.
18.
Vijay
,
K.
,
Venkateswarlu
,
V.
, and
Nishad
,
C.
,
2021
, “
Wave Scattering by Inverted Trapezoidal Porous Boxes Using Dual Boundary Element Method
,”
Ocean Eng.
,
219
(
1
), p.
108149
.
19.
Liu
,
Y.
, and
Li
,
Y.-C.
,
2011
, “
Wave Interaction With a Wave Absorbing Double Curtain-Wall Breakwater
,”
Ocean Eng.
,
38
(
10
), pp.
1237
1245
.
20.
Koley
,
S.
,
Sarkar
,
A.
, and
Sahoo
,
T.
,
2015
, “
Interaction of Gravity Waves With Bottom-Standing Submerged Structures Having Perforated Outer-Layer Placed on a Sloping Bed
,”
Appl. Ocean Res.
,
52
(
5
), pp.
245
260
.
21.
Das
,
S.
, and
Bora
,
S.
,
2018
, “
Oblique Water Wave Damping by Two Submerged Thin Vertical Porous Plates of Different Heights
,”
Comput. Appl. Math.
,
37
(
3
), pp.
3759
3779
.
22.
Chanda
,
A.
, and
Bora
,
S.
,
2022
, “
Scattering of Flexural Gravity Waves by a Pair of Submerged Vertical Porous Barriers Located Above a Porous Sea-Bed
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
1
), p.
011201
.
23.
Stiassnie
,
M.
, and
Drimer
,
N.
,
2003
, “
On a Freely Floating Porous Box in Shallow Water Waves
,”
Appl. Ocean Res.
,
25
(
5
), pp.
263
268
.
24.
Pereira
,
E.
,
Teh
,
H.
,
Manoharan
,
L.
, and
Lim
,
C.
,
2018
, “
Design Optimization of a Porous Box-Type Breakwater Subjected to Regular Waves
,”
MATEC Web of Conferences
,
Kuala Lumpur, Malaysia
,
Aug. 13–14
,
Vol. 203
,
EDP Sciences
,
Cedex, France
, p.
01018
.
25.
Liu
,
Y.
,
Li
,
Y.-C.
, and
Teng
,
B.
,
2007
, “
Wave Interaction With a Perforated Wall Breakwater With a Submerged Horizontal Porous Plate
,”
Ocean Eng.
,
34
(
17–18
), pp.
2364
2373
.
26.
Singla
,
S.
,
Behera
,
H.
,
Martha
,
S.
, and
Sahoo
,
T.
,
2019
, “
Scattering of Obliquely Incident Water Waves by a Surface-Piercing Porous Box
,”
Ocean Eng.
,
193
(
6
), p.
106577
.
27.
Kaligatla
,
R.
,
Sharma
,
M.
, and
Sahoo
,
T.
,
2021
, “
Wave Interaction with a Pair of Submerged Floating Tunnels in the Presence of an Array of Submerged Porous Breakwaters
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
2
), p.
021402
.
28.
Vijay
,
K.
, and
Sahoo
,
T.
,
2019
, “
Scattering of Surface Gravity Waves by a Pair of Floating Porous Boxes
,”
ASME J. Offshore Mech. Arctic Eng.
,
141
(
5
), p.
051803
.
29.
Belibassakis
,
K.
, and
Athanassoulis
,
G.
,
2006
, “
A Coupled-Mode Technique for Weakly Nonlinear Wave Interaction With Large Floating Structures Lying Over Variable Bathymetry Regions
,”
Appl. Ocean Res.
,
28
(
1
), pp.
59
76
.
30.
Vanden-Broeck
,
J.-M.
, and
Părău
,
E.
,
2011
, “
Two-Dimensional Generalized Solitary Waves and Periodic Waves Under an Ice Sheet
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
369
, pp.
2957
2972
.
31.
Wang
,
C.
, and
Meylan
,
M.
,
2002
, “
The Linear Wave Response of a Floating Thin Plate on Water of Variable Depth
,”
Appl. Ocean Res.
,
24
(
3
), pp.
163
174
.
32.
Porter
,
D.
, and
Porter
,
R.
,
2004
, “
Approximations to Wave Scattering by an Ice Sheet of Variable Thickness Over Undulating Bed Topography
,”
J. Fluid Mech.
,
509
, pp.
145
179
.
33.
Sturova
,
I.
,
2009
, “
Time-Dependent Response of a Heterogeneous Elastic Plate Floating on Shallow Water of Variable Depth
,”
J. Fluid Mech.
,
637
, pp.
305
325
.
34.
Singla
,
S.
,
Martha
,
S.
, and
Sahoo
,
T.
,
2018
, “
Mitigation of Structural Responses of a Very Large Floating Structure in the Presence of Vertical Porous Barrier
,”
Ocean Eng.
,
165
, pp.
505
527
.
35.
Chwang
,
A.
,
1983
, “
A Porous-Wavemaker Theory
,”
J. Fluid Mech.
,
132
, pp.
395
406
.
36.
Chwang
,
A.
, and
Chan
,
A.
,
1998
, “
Interaction Between Porous Media and Wave Motion
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
53
84
.
37.
Sollitt
,
C.
, and
Cross
,
R.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
Coast. Eng. Proc.
,
1
(
13
), p.
99
.
38.
Gayathri
,
R.
, and
Behera
,
H.
,
2021
, “
Mitigation of Wave Force on a Circular Flexible Plate by a Surface-Piercing Flexible Porous Barrier
,”
Proc. Inst. Mech. Eng. Part M J. Eng. Maritime Environ.
,
235
(
2
), pp.
586
599
.
39.
Andrianov
,
A.
, and
Hermans
,
A.
,
2003
, “
The Influence of Water Depth on the Hydroelastic Response of a Very Large Floating Platform
,”
Marine Struct.
,
16
(
5
), pp.
355
371
.
40.
Roy
,
R.
,
De
,
S.
, and
Mandal
,
B.
,
2019
, “
Water Wave Scattering by Multiple Thin Vertical Barriers
,”
Appl. Math. Comput.
,
355
, pp.
458
481
.
You do not currently have access to this content.