Abstract

Deepwater steel lazy wave risers (SLWR) subject to vessel motion will be exposed to time-varying oscillatory flow, vortices could be generated and the cyclic vortex-shedding force causes the structure vibrate, such fluid–structure interaction is called vortex-induced vibrations (VIV). To investigate VIV on a riser with nonlinear structures under vessel motion and oscillatory flows, time-domain approaches are needed. In this study, a time-domain approach is used to simulate a full-scale SLWR. Two cases with simplified riser top motions are simulated numerically. By using default input parameters to the time-domain approach, the key oscillatory flow induced VIV response characteristics such as response frequency, curvature, and displacements are examined and discussed. More accurate VIV prediction could be achieved by using realistic hydrodynamic inputs into the time domain model.

References

1.
Yin
,
D.
,
Lie
,
H.
, and
Wu
,
J.
,
2020
, “
Structural and Hydrodynamic Aspects of Steel Lazy Wave Riser in Deepwater
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
2
), p.
020801
.
2.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1988
, “
Transverse Vibrations of an Elastically Mounted Cylinder Exposed to an Oscillating Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
110
(
4
), pp.
387
394
.
3.
Fu
,
S.
,
Wang
,
J.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2014
, “
Features of Vortex-Induced Vibration in Oscillatory Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
1
), p.
011801
.
4.
Wang
,
J.
,
Fu
,
S.
,
Larsen
,
C. M.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Lie
,
H.
,
2017
, “
Dominant Parameters for Vortex-Induced Vibration of a Steel Catenary Riser Under Vessel Motion
,”
Ocean Eng.
,
136
(
4
), pp.
260
271
.
5.
Zhang
,
M.
,
Fu
,
S.
,
Song
,
L.
,
Wu
,
J.
,
Lie
,
H.
, and
Ren
,
H.
,
2017
, “
Hydrodynamics of Flexible Pipe With Staggered Buoyancy Elements Undergoing Vortex-Induced Vibrations
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2
, Paper No. V002T08A030.
6.
Deka
,
D.
,
Chandra
,
Y.
,
Campbell
,
M.
,
Santala
,
M.
,
Constantinides
,
Y.
,
Jin
,
J.
,
Darilmaz
,
I.
,
Nadathur
,
R.
, and
Yiu
,
F.
,
2019
, “
STREAM JIP – Insights Into Steel Catenary Riser Response Using Measured Data
,”
Offshore Technology Conference
,
Houston, TX
,
May 6–9
.
7.
AMOG MIT, 2016. User Guide for SHEAR7 version 4.9b, Mar.
8.
Triantafyllou
,
M.
,
Triantafyllou
,
G.
,
Tein
,
Y. D.
, and
Ambrose
,
B. D.
,
1999
, “
Pragmatic Riser VIV Analysis
,”
Offshore Technology Conference
, Paper No. OTC-10931-MS.
9.
Passano
,
E.
,
Larsen
,
C. M.
,
Lie
,
H.
, and
Wu
,
J.
,
2015
, “
VIVANA Theory Manual Release 4.6 rev.0
,” Technical Report MT2014 F-135, MARINTEK, Trondheim, Norway.
10.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2014
, “
A Simplified Method for Time Domain Simulation of Cross-Flow Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
49
, pp.
135
148
.
11.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2015
, “
Fatigue Damage From Time Domain Simulation of Combined In-Line and Cross-Flow Vortex-Induced Vibrations
,”
Mar. Struct.
,
41
, pp.
200
222
.
12.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2016
, “
Time Domain Simulation of Vortex-Induced Vibrations in Stationary and Oscillating Flows
,”
J. Fluids Struct.
,
61
, pp.
1
19
.
13.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2017
, “
Non-Linear Time Domain Analysis of Cross-Flow Vortex-Induced Vibrations
,”
Mar. Struct.
,
51
, pp.
134
151
.
14.
SINTEF Ocean
,
2021
, “
RIFLEX Theory Manual
,” Trondheim, Norway.
15.
Faltinsen
,
O. M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
16.
Ulveseter
,
J.
,
Thorsen
,
M.
,
Sævik
,
S.
, and
Larsen
,
C.
,
2017
, “
Stochastic Modelling of Cross-Flow Vortex-Induced Vibrations
,”
Mar. Struct.
,
56
, pp.
260
280
.
17.
Gopalkrishnan
,
R.
,
1993
, “
Vortex-Induced Forces on Oscillating Bluff Cylinders
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
18.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
, pp.
85
130
.
19.
Trim
,
A.
,
Braaten
,
H.
,
Lie
,
H.
, and
Tognarelli
,
M.
,
2005
, “
Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers
,”
J. Fluids Struct.
,
21
(
3
), pp.
335
361
.
20.
Wang
,
J.
,
Fu
,
S.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2014
, “
Fatigue Damage of a Steel Catenary Riser From Vortex-Induced Vibration Caused by Vessel Motions
,”
Mar. Struct.
,
39
, pp.
131
156
.
21.
Yue
,
B.
,
Campbell
,
M.
,
Walters
,
D.
,
Thompson
,
H.
, and
Raghavan
,
K.
,
2010
, “
Improved SCR Design for Dynamic Vessel Applications
,”
Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
,
Shanghai, China
,
June 6–11
.
22.
SINTEF Ocean,
2021
,
VIVANA Theory Manual
, Trondheim, Norway.
23.
SINTEF Ocean,
2021
,
SIMA User Guide
, Trondheim, Norway.
24.
Swithenbank
,
S. B.
,
Vandiver
,
J. K.
,
Larsen
,
C. M.
, and
Lie
,
H.
,
2008
, “
Reynolds Number Dependence of Flexible Cylinder VIV Response Data
,”
Proceedings of the ASME 2008 27th International Conference on Ocean, Offshore and Arctic Engineering: Materials Technology; CFD and VIV
,
Estoril, Portugal
,
June 15–20
, Vol. 5, pp.
503
511
.
25.
Yin
,
D.
,
Lie
,
H.
, and
Baarholm
,
R. J.
,
2018
, “
Prototype Reynolds Number VIV Tests on a Full-Scale Rigid Riser
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
1
), p.
011702
.
26.
Yin
,
D.
,
Passano
,
E.
,
Lie
,
H.
,
Grytøyr
,
G.
,
Aronsen
,
K.
,
Tognarelli
,
M.
, and
Kebadze
,
E. B.
,
2019
, “
Experimental and Numerical Study of a Top Tensioned Riser Subjected to Vessel Motion
,”
Ocean Eng.
,
171
, pp.
565
574
.
27.
Fu
,
S.
,
Wu
,
J.
,
Lie
,
H.
, and
Baarholm
,
R.
,
2017
, “
Hydrodynamic Coefficients of a Flexible Pipe With Staggered Buoyancy Elements and Strakes Under VIV Conditions
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2
, Paper No. V002T08A044.
28.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1997
,
Hydrodynamic Around Cylindrical Structures
(Vol.
12
,
Advanced Series on Ocean Engineering
),
World Scientific
,
London
.
29.
Williamson
,
C. H. K.
,
1985
, “
Sinusoidal Flow Relative to Circular Cylinders
,”
J. Fluid Mech.
,
155
, pp.
141
174
.
30.
Morton
,
C.
, and
Yarusevych
,
S.
,
2014
, “
On Vortex Shedding From Low Aspect Ratio Dual Step Cylinders
,”
J. Fluids Struct.
,
44
, pp.
251
269
.
31.
Wu
,
J.
,
Lie
,
H.
,
Constantinides
,
Y.
, and
Baarholm
,
R.
,
2016
, “
NDP Riser VIV Model Test With Staggered Buoyancy Elements
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2, CFD and VIV
, Paper No. V002T08A036.
32.
Lie
,
H.
,
Mo
,
K.
, and
Vandiver
,
J. K.
,
1998
, “
VIV Model Test of a Bare- and a Staggered Buoyancy Riser in a Rotating Rig
,”
Offshore Technology Conference
, Paper No. OTC8700.
33.
Rao
,
Z.
,
Vandiver
,
J.
, and
Jhingran
,
V.
,
2015
, “
Vortex Induced Vibration Excitation Competition Between Bare and Buoyant Segments of Flexible Cylinders
,”
Ocean Eng.
,
94
, pp.
186
198
.
34.
Wu
,
J.
,
Lie
,
H.
,
Fu
,
S.
,
Baarholm
,
R.
, and
Constantinides
,
Y.
,
2017
, “
VIV Responses of Riser With Buoyancy Elements: Forced Motion Test and Numerical Prediction
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV, Vol.
2
, Paper No. V002T08A013.
You do not currently have access to this content.