Abstract

Accurate and reliable phase-resolved prediction of ocean surface waves is crucial for many offshore operations in ocean engineering and marine science. One important application is in optimal control of a power take-off in a wave energy converter, leading to significantly higher power production. Our interest is forecasting wave fields based on measurements obtained from multiple upwave locations in moderate seas with small directional spreading angles, as occurs along the south coast of Australia. The prediction model, based on FFTs and propagation of waves according to the linear dispersion relation, is applied to both wave groups and irregular wave fields generated in a wave basin and, additionally, to ocean waves measured with drifting wave buoys. To account for spreading, the model numerically advances linear, plane (i.e., long-crested) waves in space at an optimum offset angle equal to the underlying sea-state root mean square spreading angle. Averaging predictions from a few slightly separated measurement locations, each weighted according to its estimated variance, results in more accurate predictions than from any single location. We also assess in detail the effect of drifting buoy measurements in both long-crested and short-crested seas using synthetic wave records and show that it is possible to satisfactorily reconstruct the signal at fixed points based on the Doppler shift felt by the drifting buoy. The reconstructed signals give much better predictions compared to those completely neglecting the effect of even rather slow drift due to current.

References

1.
Naaijen
,
P.
,
Van Dijk
,
R. R. T.
,
Huijsmans
,
R. H. M.
, and
El-Mouhandiz
,
A. A.
,
2009
, “
Real Time Estimation of Ship Motions in Short Crested Seas
,”
ASME 2009 28th International Conference on Ocean Offshore and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
, pp.
243
255
.
2.
Falnes
,
J.
,
1995
, “
On Non-Causal Impulse Response Functions Related to Propagating Water Waves
,”
Appl. Ocean. Res.
,
17
(
6
), pp.
379
389
.
3.
Hals
,
J.
,
Bjarte-Larsson
,
T.
, and
Falnes
,
J.
,
2002
, “
Optimum Reactive Control and Control by Latching of a Wave-Absorbing Semisubmerged Heaving Sphere
,”
ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
,
Oslo, Norway
,
June 23–28
, pp.
415
423
.
4.
Babarit
,
A.
,
2018
,
Ocean Wave Energy Conversion: Resource, Technologies and Performance
,
ISTE Press-Elsevier
.
5.
Zhang
,
J.
,
Yang
,
J.
,
Wen
,
J.
,
Prislin
,
I.
, and
Hong
,
K.
,
1999
, “
Deterministic Wave Model for Short-Crested Ocean Waves: Part I. Theory and Numerical Scheme
,”
Appl. Ocean. Res.
,
21
(
4
), pp.
167
188
.
6.
Janssen
,
T. T.
,
Van Dongeren
,
A. R.
, and
Kuiper
,
C.
,
2002
, “
Phase Resolving Analysis of Multidirectional Wave Trains
,”
Proceedings of the Fourth International Symposium Ocean Wave Measurement and Analysis, Waves 2001
,
San Francisco, CA
,
Sept. 2–6
.
7.
Zhang
,
J.
,
Prislin
,
I.
,
Yang
,
J.
, and
Wen
,
J.
,
1999
, “
Deterministic Wave Model for Short-Crested Ocean Waves: Part II. Comparison With Laboratory and Field Measurements
,”
Appl. Ocean. Res.
,
21
(
4
), pp.
189
206
.
8.
Fisher
,
A.
,
Thomson
,
J.
, and
Schwendeman
,
M.
,
2021
, “
Rapid Deterministic Wave Prediction Using a Sparse Array of Buoys
,”
Ocean. Eng.
,
228
, p.
108871
.
9.
Hlophe
,
T.
,
Wolgamot
,
H.
,
Taylor
,
P. H.
,
Kurniawan
,
A.
,
Orszaghova
,
J.
, and
Draper
,
S.
,
2022
, “
Wave-by-Wave Prediction in Weakly Nonlinear and Narrowly Spread Seas Using Fixed-Point Surface-Elevation Time Histories
,”
Appl. Ocean. Res.
,
122
, p.
103112
.
10.
Lindgren
,
G.
,
1970
, “
Some Properties of a Normal Process Near a Local Maximum
,”
Ann. Math. Stat.
,
41
(
6
), pp.
1870
1883
.
11.
Boccotti
,
P.
,
1983
, “
Some New Results on Statistical Properties of Wind Waves
,”
Appl. Ocean. Res.
,
5
(
3
), pp.
134
140
.
12.
Jonathan
,
P.
, and
Taylor
,
P. H.
,
1997
, “
On Irregular, Nonlinear Waves in a Spread Sea
,”
ASME J. Offshore Mech. Arctic Eng.
,
119
(
1
), pp.
37
41
.
13.
Morris
,
E. L.
,
Zienkiewicz
,
H. K.
, and
Belmont
,
M. R.
,
1998
, “
Short Term Forecasting of the Sea Surface Shape
,”
Int. Shipbuild. Progress
,
45
(
444
), pp.
383
400
.
14.
Abusedra
,
L.
, and
Belmont
,
M. R.
,
2011
, “
Prediction Diagrams for Deterministic Sea Wave Prediction and the Introduction of the Data Extension Prediction Method
,”
Int. Shipbuild. Progress
,
58
(
1
), pp.
59
81
.
15.
Hlophe
,
T.
,
Wolgamot
,
H.
,
Kurniawan
,
A.
,
Taylor
,
P. H.
,
Orszaghova
,
J.
, and
Draper
,
S.
,
2021
, “
Fast Unidirectional Wave-by-Wave Prediction of Weakly Nonlinear Wave Fields: Validation Using Physical Measurements
,”
Proceedings of the 14th European Wave and Tidal Energy Conference
,
Plymouth, UK
,
Sept. 5–9
, pp.
22141
22148
.
16.
Tucker
,
M. J.
,
Challenor
,
P. G.
, and
Carter
,
D. J. T.
,
1984
, “
Numerical Simulation of a Random Sea: A Common Error and Its Effect Upon Wave Group Statistics
,”
Appl. Ocean. Res.
,
6
(
2
), pp.
118
122
.
17.
Bevington
,
P. R.
,
Robinson
,
D. K.
,
Blair
,
J. M.
,
Mallinckrodt
,
A. J.
, and
McKay
,
S.
,
1993
, “
Data Reduction and Error Analysis for the Physical Sciences
,”
Comput. Phys.
,
7
(
4
), pp.
415
416
.
18.
Hlophe
,
T.
,
Wolgamot
,
H.
,
Kurniawan
,
A.
,
Taylor
,
P. H.
,
Orszaghova
,
J.
, and
Draper
,
S.
,
2021
, “
Fast Wave-by-Wave Prediction of Weakly Nonlinear Unidirectional Wave Fields
,”
Appl. Ocean. Res.
,
112
, p.
102695
.
19.
Andersen
,
T. L.
,
Meinert
,
P.
, and
Frigaard
,
P.
,
2017
, “
AwaSys 7
,” https://www.hydrosoft.civil.aau.dk/awasys/.
20.
Orszaghova
,
J.
,
Taylor
,
P. H.
,
Borthwick
,
A. G. L.
, and
Raby
,
A. C.
,
2014
, “
Importance of Second-Order Wave Generation for Focused Wave Group Run-Up and Overtopping
,”
Coastal Eng.
,
94
, pp.
63
79
.
21.
Kuik
,
A. J.
,
Van Vledder
,
G. P.
, and
Holthuijsen
,
L. H.
,
1988
, “
A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data
,”
J. Phys. Oceanogr.
,
18
(
7
), pp.
1020
1034
.
You do not currently have access to this content.