Abstract

Clean energy captured by offshore wind turbines has been widely used for supporting onshore activities. In the near future, facilities such as offshore wind turbines can also play an important role in the energy transition of offshore activities. Offshore wind energy can be employed for electrifying operations in offshore fish farms, which are traditionally supplied by diesel-engine barges/generators. Based on this motivation, this study focuses on the design of a shared mooring system between a semi-submersible offshore fish cage and a spar-type floating wind turbine. A numerical model of the proposed shared mooring system is implemented in a global response analysis software sima for performing fully coupled time-domain simulations. The configuration of the shared mooring line is determined using an engineering approach, which comprises Irvine’s formulation, system eigenvalue analysis, and cost estimation. Moreover, relevant case studies by altering the environmental conditions are performed. Extreme operational conditions that may give large relative motions are investigated thoroughly. The dynamic performance of the integrated system is compared with that of individual structures. The global motion of the floating wind turbine and its mooring line’s tension behavior are obviously influenced by the existence of the shared line. In general, the present work investigates the feasibility of a shared mooring system for these types of offshore structures and further gives insights into the engineering design procedure.

References

1.
SalMar Aker Ocean
,
2022
, “
Ocean Farm 1 Is Transported to Aker Solutions’ Shipyard in Verdal for Upgrading
,”
SalMar Aker Ocean
, https://salmarakerocean.no/ocean-farm-1-transporteres-til-aker-solutions-verft-i-verdal-for-oppgradering/
2.
Jin
,
J.
,
Su
,
B.
,
Dou
,
R.
,
Luan
,
C.
,
Li
,
L.
,
Nygaard
,
I.
,
Fonseca
,
N.
, and
Gao
,
Z.
,
2021
, “
Numerical Modelling of Hydrodynamic Responses of Ocean Farm 1 in Waves and Current and Validation Against Model Test Measurements
,”
Marine Struct.
,
78
, p.
103017
.
3.
Jebsen
,
S. H. N.
,
2021
, “
Scenarios for the Decarbonization of Energy Supply for Salmon Aquaculture in Norway
,” Master's Thesis.
4.
Sømme
K.
,
2022
, “
Anbefaler tre områder for havbruk til havs—Stiim Aqua Cluster. Stiim Aqua Cluster
,” https://stiimaquacluster.no/2022/07/15/anbefaler-tre-omrader-for-havbruk-til-havs/
6.
Chu
,
Y. I.
, and
Wang
,
C. M.
,
2020
, “
Hydrodynamic Response Analysis of Combined Spar Wind Turbine and Fish Cage for Offshore Fish Farms
,”
Int. J. Str. Stab. Dyn.
,
20
(
9
), p.
2050104
.
7.
Lei
,
Y.
,
Zhao
,
S. X.
,
Zheng
,
X. Y.
, and
Li
,
W.
,
2020
, “
Effects of Fish Nets on the Nonlinear Dynamic Performance of a Floating Offshore Wind Turbine Integrated With a Steel Fish Farming Cage
,”
Int. J. Str. Stab. Dyn.
,
20
(
3
), p.
2050042
.
8.
Lei
,
Y.
,
Zheng
,
X. Y.
,
Li
,
W.
,
Zheng
,
H.
,
Zhang
,
Q.
,
Zhao
,
S.
,
Cai
,
X.
,
Ci
,
X.
, and
He
,
Q.
,
2021
, “
Experimental Study of the State-of-the-art Offshore System Integrating a Floating Offshore Wind Turbine With a Steel Fish Farming Cage
,”
Marine Struct.
,
80
, p.
103076
.
9.
Zheng
,
X.
,
Zheng
,
H.
,
Lei
,
Y.
,
Li
,
Y.
, and
Li
,
W.
,
2020
, “
An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions
,”
Energies
,
13
(
3
), p.
604
.
10.
Zhang
,
C.
,
Wang
,
S.
,
Cui
,
M.
,
Liu
,
H.
,
Liu
,
A.
,
Xu
,
J.
, and
Xie
,
S.
,
2022
, “
Modeling and Dynamic Response Analysis of a Submersible Floating Offshore Wind Turbine Integrated With an Aquaculture Cage
,”
Ocean Eng.
,
263
, p.
112338
.
11.
Liu
,
H.
,
Chen
,
M.
,
Han
,
Z.
,
Zhou
,
H.
, and
Li
,
L.
,
2022
, “
Feasibility Study of a Novel Open Ocean Aquaculture Ship Integrating With a Wind Turbine and an Internal Turret Mooring System
,”
J. Marine Sci. Eng.
,
10
(
11
), p.
1729
.
12.
Jonkman
J.
,
2010
, “Definition of the Floating System for Phase IV of OC3,” Technical Report.
13.
Thomsen
,
F.
,
Lüdemann
,
K.
,
Kafemann
,
R.
, and
Piper
,
W.
,
2006
, “
Effects of Offshore Wind Farm Noise on Marine Mammals and Fish
,” COWRIE Ltd., Hamburg, Germany.
14.
Equinor
,
2022
, “Adjusted Assembly Plan for the Final Four Hywind Tampen Turbines,” https://www.equinor.com/news/20220713-adjusted-assembly-plan-for-the-final-four-hywind-tampen-turbines
15.
Liang
,
G.
,
Jiang
,
Z.
, and
Merz
,
K.
,
2021
, “
Mooring Analysis of a Dual-Spar Floating Wind Farm With a Shared Line
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
6
), p.
062003
.
16.
Liang
,
G.
,
Merz
,
K.
, and
Jiang
,
Z.
,
2020
, “
Modeling of a Shared Mooring System for a Dual-Spar Configuration
,”
Am. Soc. Mech. Eng. Dig. Coll.
17.
Lozon
,
E.
, and
Hall
,
M.
,
2023
, “
Coupled Loads Analysis of a Novel Shared-Mooring Floating Wind Farm
,”
Appl. Energy
,
332
, p.
120513
.
18.
Wilson
,
S.
,
Hall
,
M.
,
Housner
,
S.
, and
Sirnivas
,
S.
,
2021
, “
Linearized Modeling and Optimization of Shared Mooring Systems
,”
Ocean Eng.
,
241
, p.
110009
.
19.
Equinor
.
2022
, “
Hywind Scotland
,” https://www.equinor.com/energy/hywind-scotland
20.
Equinor
,
2023
, “
Hywind Tampen
,” https://www.equinor.com/energy/hywind-tampen
21.
DNV
,
2015
, “
DNVGL-OS-E301 Position Mooring
,”
Rules and Standard
.
22.
Irvine
,
H. M.
,
2022
,
Cable Structures (Structural Mechanics)
, MIT Press, Cambridge, MA.
23.
Mathworks
,
2023
, “
Solve Symbolic Equations Numerically—MATLAB vpasolve—MathWorks Nordic
,” https://se.mathworks.com/help/symbolic/sym.vpasolve.html
24.
SciPy Community
,
2023
, “
scipy.optimize.fsolve—SciPy v1.11.1 Manual
,” https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html
25.
Gao
,
Z.
, and
Moan
,
T.
,
2009
, “
Mooring System Analysis of Multiple Wave Energy Converters in a Farm Configuration
.”
26.
Hall
,
M.
, and
Connolly
,
P.
,
2018
,
Coupled Dynamics Modelling of a Floating Wind Farm With Shared Mooring Lines
, Madrid, Spain,
American Society of Mechanical Engineers Digital Collection
.
27.
Newman
,
J. N.
,
2018
,
Marine Hydrodynamics
,
The MIT Press
,
Cambridge, MA
.
28.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol.
,
2
(
5
), pp.
149
154
.
29.
Cheng
,
H.
,
Li
,
L.
,
Aarsæther
,
K. G.
, and
Ong
,
M. C.
,
2020
, “
Typical Hydrodynamic Models for Aquaculture Nets: A Comparative Study Under Pure Current Conditions
,”
Aquac. Eng.
,
90
, p.
102070
.
30.
Løland
,
G.
,
1991
, “
Current Forces on and Flow Through Fish Farms
,”
Doctors thesis
,
Univeristy of Trondheim
, MTA Report 78, Institute for Hydrodynamics, Norway.
31.
Cummins
,
W. E.
,
2010
,
The Impulse Response Function and Ship Motions
,
Institut flir Schiffbau der Universitit Hamburg
,
Hamburg, Germany
.
32.
SINTEF Ocean
,
2022
, “
SIMA Documentation
,” https://www.sima.sintef.no/doc/4.4.0/sima/index.html
33.
Ahn
,
H.-J.
, and
Shin
,
H.
,
2019
, “
Model Test and Numerical Simulation of OC3 Spar Type Floating Offshore Wind Turbine
,”
Int. J. Naval Archit. Ocean Eng.
,
11
(
1
), pp.
1
10
.
34.
Si
,
Y.
,
Karimi
,
H. R.
, and
Gao
,
H.
,
2013
, “
Modeling and Parameter Analysis of the OC3-Hywind Floating Wind Turbine With a Tuned Mass Damper in Nacelle
,”
J. Appl. Math.
,
2013
, p.
e679071
.
35.
El Beshbichi
,
O.
,
Xing
,
Y.
, and
Ong
,
M. C.
,
2021
, “
An Object-Oriented Method for Fully Coupled Analysis of Floating Offshore Wind Turbines Through Mapping of Aerodynamic Coefficients
,”
Marine Struct.
,
78
, p.
102979
.
36.
Schnepf
,
A.
,
Lopez-Pavon
,
C.
,
Ong
,
M. C.
,
Yin
,
G.
, and
Johnsen
,
Ø.
,
2023
, “
Feasibility Study on Suspended Inter-Array Power Cables Between Two Spar-Type Offshore Wind Turbines
,”
Ocean Eng.
,
277
, p.
114215
.
37.
National Renewable Energy Laboratory (NREL)
,
2022
, OpenFAST v3.3.0 Documentation, https://openfast.readthedocs.io/en/main/#
38.
Johnsen
,
Ø.
,
2022
, “
MariCulture Smart Fishfarm
,” Metocean Design Basis, Haltenbanken II.. Consultation on Clearance of Location for Aquaculture in the Norwegian Sea, Directorate of Fisheries, https://www.fiskeridir.no/Akvakultur/Dokumenter/Hoeringer/horing-om-klarering-av-lokalitet-for-akvakultur-i-norskehavet
39.
Kvittem
,
M. I.
, and
Moan
,
T.
,
2015
, “
Time Domain Analysis Procedures for Fatigue Assessment of a Semi-Submersible Wind Turbine
,”
Marine Struct.
,
40
, pp.
38
59
.
You do not currently have access to this content.