Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Flow-induced vibration (FIV) is a common phenomenon in ocean engineering for subsea structures with circular-shaped cross sections. A large amount of computational resources or experimental efforts are required to predict or measure the complicated motions and flow field surrounding a circular cylinder undergoing vortex-induced vibration (VIV). Physics-informed neural networks (PINNs) are powerful deep learning techniques for solving governing partial differential equations (PDEs) of dynamic systems as an alternative to complex numerical methods. In the present study, a framework is built employing PINNs for solving the Navier–Stokes equations to predict flows past an FIV cylinder using sparsely distributed spatiotemporal data inside the domain. The training process involves minimizing the supervised loss of flow data at these sparse points and the residuals of the governing PDEs. For the training of the PINN model, a moving frame around an FIV cylinder is used to collect the training flow data from two-dimensional direct numerical simulation results at a low Reynolds number. The structural displacements of the cylinder are also implemented in the residuals of the equations of the developed PINN. The performance of the PINN is evaluated by comparing the predicted contours of the surrounding flow velocities with the training data. The hydrodynamic forces prediction is achieved using the PINN-obtained flow field predictions combined with the force partitioning method.

References

1.
Janocha
,
M. J.
,
Ong
,
M. C.
, and
Li
,
Z.
,
2020
, “
Vortex-Induced Vibrations of Two Cylinders With Different Diameters Close to a Horizontal Plane Boundary at Low Reynolds Number
,”
Eng. Struct.
,
204
, p.
109893
.
2.
Janocha
,
M. J.
,
Ong
,
M. C.
,
Nystrøm
,
P. R.
,
Tu
,
Z.
,
Endal
,
G.
, and
Stokholm
,
H.
,
2021
, “
Flow Around Two Elastically-Mounted Cylinders With Different Diameters in Tandem and Staggered Configurations in the Subcritical Reynolds Number Regime
,”
Mar. Struct.
,
76
, p.
102893
.
3.
Serta
,
C. P. V.
,
Janocha
,
M. J.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Numerical Simulations of Flow-Induced Vibrations of Two Rigidly Coupled Cylinders With Uneven Diameters in the Upper Transition Reynolds Number Regime
,”
J. Fluids Struct.
,
105
, p.
103332
.
4.
Lee
,
C. F.
,
Ji
,
G.
,
Janocha
,
M. J.
,
Ong
,
M. C.
, and
Borsheim
,
A.
,
2023
, “
Numerical Simulation of Piggyback Pipelaying Under Current Loadings
,”
Mar. Struct.
,
91
, p.
103478
.
5.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
6.
Sanderse
,
B.
,
Van der Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
7.
Schnepf
,
A.
,
Lopez-Pavon
,
C.
,
Ong
,
M. C.
,
Yin
,
G.
, and
Johnsen
,
Ø.
,
2023
, “
Feasibility Study on Suspended Inter-Array Power Cables Between Two Spar-Type Offshore Wind Turbines
,”
Ocean Eng.
,
277
, p.
114215
.
8.
Ahmad
,
I. B.
,
Schnepf
,
A.
, and
Ong
,
M. C.
,
2023
, “
An Optimisation Methodology for Suspended Inter-array Power Cable Configurations Between Two Floating Offshore Wind Turbines
,”
Ocean Eng.
,
278
, p.
114406
.
9.
Beier
,
D.
,
Schnepf
,
A.
,
Van Steel
,
S.
,
Ye
,
N.
, and
Ong
,
M. C.
,
2023
, “
Fatigue Analysis of Inter-array Power Cables Between Two Floating Offshore Wind Turbines Including a Simplified Method to Estimate Stress Factors
,”
J. Mar. Sci. Eng.
,
11
(
6
), p.
1254
.
10.
Janocha
,
M. J.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Modal Analysis of Wake Behind Stationary and Vibrating Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
041902
.
11.
Janocha
,
M. J.
,
Ong
,
M. C.
, and
Yin
,
G.
,
2022
, “
Large Eddy Simulations and Modal Decomposition Analysis of Flow Past a Cylinder Subject to Flow-Induced Vibration
,”
Phys. Fluids
,
34
(
4
), p. 045119.
12.
Yin
,
G.
,
Janocha
,
M. J.
, and
Ong
,
M. C.
,
2022
, “
Estimation of Hydrodynamic Forces on Cylinders Undergoing Flow-Induced Vibrations Based on Modal Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
6
), p.
060904
.
13.
Vinuesa
,
R.
, and
Brunton
,
S. L.
,
2022
, “
Enhancing Computational Fluid Dynamics With Machine Learning
,”
Nat. Comput. Sci.
,
2
(
6
), pp.
358
366
.
14.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “Auto-encoding Variational Bayes,” preprint arXiv:1312.6114.
15.
Eivazi
,
H.
,
Le Clainche
,
S.
,
Hoyas
,
S.
, and
Vinuesa
,
R.
,
2022
, “
Towards Extraction of Orthogonal and Parsimonious Non-linear Modes From Turbulent Flows
,”
Expert Syst. Appl.
,
202
, p.
117038
.
16.
Wang
,
Y.
,
Solera-Rico
,
A.
,
Vila
,
C. S.
, and
Vinuesa
,
R.
,
2024
, “
Towards Optimal β-Variational Autoencoders Combined With Transformers for Reduced-Order Modelling of Turbulent Flows
,”
Int. J. Heat Fluid Flow
,
105
, p.
109254
.
17.
Srinivasan
,
P. A.
,
Guastoni
,
L.
,
Azizpour
,
H.
,
Schlatter
,
P.
, and
Vinuesa
,
R.
,
2019
, “
Predictions of Turbulent Shear Flows Using Deep Neural Networks
,”
Phys. Rev. Fluids
,
4
(
5
), p.
054603
.
18.
Mohan
,
A. T.
, and
Gaitonde
,
D. V.
,
2018
, “A Deep Learning Based Approach to Reduced Order Modeling for Turbulent Flow Control Using LSTM Neural Networks,” preprint arXiv:1804.09269.
19.
Nazvanova
,
A.
,
Ong
,
M. C.
, and
Yin
,
G.
,
2023
, “
A Data-Driven Reduced-Order Model Based on Long Short-Term Memory Neural Network for Vortex-Induced Vibrations of a Circular Cylinder
,”
Phys. Fluids
,
35
(
6
), p. 065103.
20.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
21.
Eivazi
,
H.
,
Tahani
,
M.
,
Schlatter
,
P.
, and
Vinuesa
,
R.
,
2022
, “
Physics-Informed Neural Networks for Solving Reynolds-Averaged Navier–Stokes Equations
,”
Phys. Fluids
,
34
(
7
), p. 075117.
22.
Yan
,
C.
,
Xu
,
S.
,
Sun
,
Z.
,
Guo
,
D.
,
Ju
,
S.
,
Huang
,
R.
, and
Yang
,
G.
,
2023
, “
Exploring Hidden Flow Structures From Sparse Data Through Deep-Learning-Strengthened Proper Orthogonal Decomposition
,”
Phys. Fluids
,
35
(
3
), p. 037119.
23.
Rao
,
C.
,
Sun
,
H.
, and
Liu
,
Y.
,
2020
, “
Physics-Informed Deep Learning for Incompressible Laminar Flows
,”
Theoret. Appl. Mech. Lett.
,
10
(
3
), pp.
207
212
.
24.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Transfer
,
143
(
6
), p.
060801
.
25.
Eivazi
,
H.
, and
Vinuesa
,
R.
,
2022
, “
Physics-Informed Deep-Learning Applications to Experimental Fluid Mechanics
,”
Measur. Sci. Technol.
,
35
(
7
), p. 075303.
26.
Raissi
,
M.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2019
, “
Deep Learning of Vortex-Induced Vibrations
,”
J. Fluid Mech.
,
861
, pp.
119
137
.
27.
Cheng
,
C.
,
Meng
,
H.
,
Li
,
Y.-Z.
, and
Zhang
,
G.-T.
,
2021
, “
Deep Learning Based on PINN for Solving 2 DOF Vortex Induced Vibration of Cylinder
,”
Ocean Eng.
,
240
, p.
109932
.
28.
Tang
,
H.
,
Liao
,
Y.
,
Yang
,
H.
, and
Xie
,
L.
,
2022
, “
A Transfer Learning-Physics Informed Neural Network (TL-PINN) for Vortex-Induced Vibration
,”
Ocean Eng.
,
266
, p.
113101
.
29.
Bai
,
X.-D.
, and
Zhang
,
W.
,
2022
, “
Machine Learning for Vortex Induced Vibration in Turbulent Flow
,”
Comput. Fluids
,
235
, p.
105266
.
30.
Leontini
,
J. S.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
,
2006
, “
The Beginning of Branching Behaviour of Vortex-Induced Vibration During Two-Dimensional Flow
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
857
864
.
31.
Menon
,
K.
, and
Mittal
,
R.
,
2020
, “
Dynamic Mode Decomposition Based Analysis of Flow Over a Sinusoidally Pitching Airfoil
,”
J. Fluids Struct.
,
94
, p.
102886
.
32.
Liu
,
D. C.
, and
Nocedal
,
J.
,
1989
, “
On the Limited Memory BFGS Method for Large Scale Optimization
,”
Math. Program.
,
45
(
1–3
), pp.
503
528
.
33.
Chang
,
C. C.
,
1992
, “
Potential Flow and Forces for Incompressible Viscous Flow
,”
Proc. R. Soc. Lond. A
,
437
(
1901
), pp.
517
525
.
34.
Zhang
,
K.
,
Hayostek
,
S.
,
Amitay
,
M.
,
He
,
W.
,
Theofilis
,
V.
, and
Taira
,
K.
,
2020
, “
On the Formation of Three-Dimensional Separated Flows Over Wings Under Tip Effects
,”
J. Fluid Mech.
,
895
, p.
A9
.
35.
Chuang
,
P. Y.
, and
Barba
,
L. A.
,
2023
, “Predictive Limitations of Physics-Informed Neural Networks in Vortex Shedding,” preprint arXiv:2306.00230.
You do not currently have access to this content.