Seven burner/furnace systems, three of which vibrated and four of which did not vibrate in operation are evaluated for thermoacoustic oscillations. The evaluation is based on the Rijke and Sondhauss models representing the combined burner/furnace (cold/hot) thermoacoustic systems. Frequency differences between the lowest vulnerable furnace acoustic frequencies in the burner axial direction and those of the systems’ Rijke and Sondhauss frequencies are evaluated to check for resonances. Most importantly, the stability of the Rijke and Sondhauss models is checked against the published design stability diagram of Eisinger (1999, “Eliminating Thermoacoustic Oscillations in Heat Exchanger and Steam Generator Systems,” ASME J. Pressure Vessel Technol., 121, pp. 444–452) and Eisinger and Sullivan (2002, “Avoiding Thermoacoustic Vibration in Burner/Furnace Systems,” ASME J. Pressure Vessel Technol., 124, pp. 418–424). It is shown that thermoacoustic oscillation can be well predicted by the published design stability diagram with the vibrating cases falling into the unstable zone above the stability line and the nonvibrating cases congregating in the stable zone below the stability line. The evaluation suggests that the primary criterion for predicting thermoacoustic oscillations is the stability of the thermoacoustic system and that frequency differences or resonances appear to play only a secondary role. It is concluded, however, that in conjunction with stability, the primary criterion, sufficient frequency separation shall also be maintained in the design process to preclude resonances. The paper provides sufficient details to aid the designers.

1.
Sondhauss
,
C.
, 1850,
Uber die Schallschwingungen der Luft in erhitzten Glasrohren und in gedeckten Pfeifen von ungleicher Weite. Poggendorff Annalen der Physik und Chemie
, Feb., Vol.
79
, pp.
1
34
.
2.
Rijke
,
P. L.
, 1859,
Notiz uber eine neue Art, die an einer an beiden Enden offenen Rohre enthaltene Luft in Schwingungen zu versetzen. Poggendorff Annalen der Physik und Chemie
, May, Vol.
107
, pp.
339
345
.
3.
Eisinger
,
F. L.
, 1994, “
Fluid-Thermoacoustic Vibration of a Gas Turbine Recuperator Tubular Heat Exchanger System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
709
717
.
4.
Eisinger
,
F. L.
, 1994, “
Vibration of Systems Comprised of Hot and Cold Components
,” U.S. Patent No. 5,489,202.
5.
Feldman
,
K. T.
, 1968, “
Review of the Literature on Sondhauss Thermoacoustic Phenomena Journal of Sound and Vibration
,”
J. Sound Vib.
0022-460X,
7
(
1
), pp.
71
82
.
6.
Feldman
,
K. T.
, 1968, “
Review of Literature on Rijke Thermoacoustic Phenomena
,”
J. Sound Vib.
0022-460X,
7
(
1
), pp.
83
89
.
7.
Putnam
,
A. A.
, and
Dennis
,
W. R.
, 1953, “
A Study of Burner Oscillations of the Organ-Pipe Type
,”
Trans. ASME
0097-6822,
75
, pp.
15
28
.
8.
Sandia National Laboratory and the Gas Research Institute, 1991,
Proceedings of International Symposium on Pulsating Combustion
, Aug.
9.
Culick
,
F. E. C.
, 1970, “
Study of Longitudinal Oscillations With Pressure and Velocity Coupling in a Solid Propellant Rocket
,”
Combustion Science and Technology
,
Gordon and Breach
,
New York
, Vol.
2
, pp.
179
201
.
10.
Gifford
,
W. E.
, and
Longworth
,
R. C.
, 1963, “
Pulse-Tube Refrigeration
,” ASME Paper No. 63-WA-290.
11.
Wheatley
,
J.
,
Hofler
,
T.
,
Swift
,
G. W.
, and
Migliori
,
A.
, 1985, “
Understanding Some Simple Phenomena in Thermoacoustics With Applications to Acoustical Heat Engines
,”
Am. J. Phys.
0002-9505,
53
(
2
), pp.
147
162
.
12.
Radebough
,
Ray
, 1990, “
A Review of Pulse Tube Refrigeration
,”
Adv. Cryog. Eng.
0065-2482,
35
, pp.
1191
1205
.
13.
Rayleigh
,
Lord
, 1945,
Theory of Sound
,
Dover
,
New York
, Vol.
II
, pp.
224
234
.
14.
Chu
,
B. T.
, 1955, “
Pressure Waves Generated by Addition of Heat in a Gaseous Medium
,” National Advisory Committee for Aeronautics, Technical Note 3411, pp.
1
47
.
15.
Chu
,
B. T.
, 1956, “
Stability of Systems Containing a Heat Source—The Rayleigh Criterion
,” National Advisory Committee for Aeronautics, Research Memorandum 56 D27.
16.
Feldman
,
K. T.
, 1966, “
A Study of Heat Generated Pressure Oscillations in Closed End Pipe
,” Ph.D. thesis, Mechanical Engineering, University of Missouri, Columbia.
17.
Feldman
,
K. T.
, and
Carter
,
R. L.
, 1970, “
A Study of Heat Driven Pressure Oscillations in a Gas
,”
ASME J. Heat Transfer
0022-1481,
92
, pp.
536
541
.
18.
Kramers
,
H. A.
, 1949, “
A Vibration of a Gas Column
,”
Physica (Utrecht)
0031-8914,
15
, pp.
971
984
.
19.
Rott
,
N.
, 1969, “
Damped and Thermally Driven Acoustic Oscillation in Wide and Narrow Tubes
,”
Journal of Applied Mathematics and Physics (ZAMP)
,
27
, pp.
230
243
.
20.
Rott
,
N.
, 1980, “
Thermoacoustic
,”
Advances in Applied Mechanics
,
Academic
,
New York
, Vol.
20
.
21.
Rott
,
N.
, and
Zouzoulas
,
G.
, 1976, “
Thermally Driven Acoustic Oscillations, Part IV: Tubes With Variable Cross Section
,”
Journal of Applied Mathematics and Physics (ZAMP)
,
27
, pp.
197
224
.
22.
Proceedings of Symposium on Combustion Instabilities Driven by Thermo-Chemical Acoustic Sources
, 1989,
A. S.
Hersh
, ed., Publ. No. NCA-4, ASME HTD-Vol.
128
.
23.
Keller
,
J. J.
, 1995, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
0001-1452,
33
(
12
), pp.
2280
2289
.
24.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
, 1991, “
A Review of Active Control of Combustion Instabilities
,”
Proceedings of International Symposium on Pulsating Combustion
, Monterey, CA, Paper G1, pp.
1
34
.
25.
Ziada
,
S.
, and
Oengoren
,
A.
, 1998, “
Acoustic Resonance in the Combustion Conduits of a Steam Locomotive
,”
J. Fluids Struct.
0889-9746,
12
, pp.
409
425
.
26.
McManus
,
K. R.
,
Magill
,
J.
, and
Miller
,
M. F.
, 1998, “
Combustion Instability Suppression in Liquid-Fueled Combustors
,”
AIAA Aerospace Science Meeting
, AIAA Paper No. 98-0642.
27.
Schadow
,
K. C.
,
Hendricks
,
E. W.
, and
Hansen
,
R. J.
, 1992, “
Recent Progress In the Implementations of Active Combustion Control
,” ICAS Paper No. 92-2.5.3, pp.
942
952
.
28.
Ziada
,
S.
, and
Graf
,
H.
, 1998, “
Feedback Control of Combustion Oscillations
,”
J. Fluids Struct.
0889-9746,
12
, pp.
491
507
.
29.
Carvalho
,
J. A.
, Jr.
,
Ferreira
,
M. A.
,
Bressan
,
C.
, and
Ferreira
,
J. L. G
, 1989, “
Rijke Tube Burner
,”
Combust. Flame
0010-2180,
76
, p.
17
27
.
30.
Eisinger
,
F. L.
, 1999, “
Eliminating Thermoacoustic Oscillations in Heat Exchanger and Steam Generator Systems
,”
ASME J. Pressure Vessel Technol.
0094-9930,
121
, pp.
444
452
.
31.
Eisinger
,
F. L.
, and
Sullivan
,
R. E.
, 2002, “
Avoiding Thermoacoustic Vibration in Burner/Furnace Systems
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
418
424
.
32.
Kinsler
,
L. E.
, 1962,
Fundamentals of Acoustics
, 2nd ed.,
Wiley
,
New York
.
33.
Eisinger
,
F. L.
, and
Sullivan
,
R. E.
, 2006, “
Evaluation of Nonvibrating Utility Burner/Furnace Systems for Resistance to Thermoacoustic Oscillations
,”
Proceedings of the 2006 ASME Pressure Vessels and Piping Conference
, Jul. 23–27,
Vancouver, BC, Canada
, Paper PVP 2006-ICPVT-11–93054.
You do not currently have access to this content.