Considering only the primary and secondary creep stages of high-density polyethylene (HDPE) material, a maximum secondary creep strain method (MSCS) and formula to calculate the maximum secondary creep strain has been developed based on existing test data and the creep law. Since the tertiary creep stage has a very short lifetime compared with the primary and secondary stages, it is reasonable to assume that rupture will occur once the creep strain reaches the maximum secondary creep strain. The implicit method of the finite element analysis software, LS-DYNA (1998, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation), is employed to determine the HDPE pipe primary creep process using an effective numeric algorithm (Whirley and Henshall, 1992, “Creep Deformation Structural Analysis Using an Efficient Numerical Algorithm,” Int. J. Numer. Methods Eng., 35, pp. 1427–1442) followed by a formula to determine the secondary creep process. The expression for the overall lifetime of the HDPE pipes is then derived. Based on the agreement between the numerical and test results, it is concluded that the MSCS method can accurately predict the long-term hydrostatic strength of a HDPE pipe.

1.
Widera
,
G. E. O.
, and
Zhao
,
L.
, 1999, “
On the Determination of Long-Term Hydrostatic Strength of Plastic Pipe
,”
Weld. Res. Counc. Bull.
0043-2326,
445
, pp.
24
45
.
2.
Zhang
,
C.
, and
Moore
,
I. D.
, 1997, “
Nonlinear Mechanical Response of High Density Polyethylene. Part I: Experimental Investigation and Model Evaluation
,”
Polym. Eng. Sci.
0032-3888,
37
, pp.
404
413
.
3.
Zhang
,
C.
, and
Moore
,
I. D.
, 1997, “
Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling
,”
Polym. Eng. Sci.
0032-3888,
37
, pp.
414
420
.
4.
Colak
,
O. U.
, and
Dusunceli
,
N.
, 2006, “
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
4
), pp.
572
578
.
5.
Merry
,
S. M.
, and
Bray
,
J. D.
, 1997, “
Time-Dependent Mechanical Response of HDPE Geomembranes
,”
J. Geotech. Geoenviron. Eng.
1090-0241,
123
(
1
), pp.
57
65
.
6.
Bakeer
,
R. M.
,
Barber
,
M. E.
,
Taylor
,
J. E.
, and
Pechon
,
S. E.
, 2001, “
Long-Term Buckling Performance of HDPE Liners
,”
J. Mater. Civ. Eng.
,
13
(
3
), pp.
177
184
. 0899-1561
7.
Dasari
,
A.
, and
Misra
,
R. D. K.
, 2003, “
On the Strain Rate Sensitivity of High Density Polyethylene and Polypropylenes
,”
Mater. Sci. Eng., A
,
358
(
1–2
), pp.
356
371
. 0885-0046
8.
Beijer
,
G. J.
, and
Spoormaker
,
J. L.
, 2000, “
Modeling of Creep Behaviour in Injection-Molded HDPE
,”
Polymer
,
41
(
14
), pp.
5443
5449
. 0032-3861
9.
2004, “
Engineering Properties of Polyethylene
,”
The Plastics Pipe Institute Handbook of Polyethylene Pipe
,
The Plastics Pipe Institute, Inc.
,
Washington, DC
, Chap. 3.
10.
Rao
,
K. R.
, 2006,
Companion Guide to the ASME Boiler and Pressure Vessel Code
, Vol.
1
,
ASME
.
11.
Suleiman
,
M. T.
, and
Coree
,
B. J.
, 2004, “
Constitutive Model for High Density Polyethylene Material: Systematic Approach
,”
J. Mater. Civ. Eng.
0899-1561,
16
(
6
), pp.
511
515
.
12.
Chehab
,
A. G.
, and
Moore
,
I. D.
, 2006, “
Constitutive Model for High Density Polyethylene to Capture Strain Reversal
,”
The Pipeline Division Specialty Conference 2006
, Chicago, IL, Jul. 30–Aug. 2.
13.
Whirley
,
R. G.
, and
Henshall
,
G. A.
, 1992, “
Creep Deformation Structural Analysis Using an Efficient Numerical Algorithm
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1427
1442
.
14.
MATHCAD 13 User’s Guide
, 2005,
Mathsoft Engineering & Education, Inc.
,
Cambridge, MA
.
15.
DataFit Help Manual, Oakdale Engineering, Oakdale, PA.
16.
1998, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation.
You do not currently have access to this content.