Alloys 617 and 230 are currently identified as two leading candidate metallic materials in the down selection for applications at temperatures above 760°C in the Gen IV nuclear reactor systems. Qualifying the materials requires significant information related to codification, mechanical behavior modeling, metallurgical stability, environmental resistance, and many other aspects. In the present paper, material requirements for the Gen IV nuclear reactor systems are discussed; available information regarding the two alloys for the intended applications are reviewed and analyzed; and further R&D activities are suggested. In the United States the major requirement for qualifying the materials is to satisfy the ASME Subsection NH, with adequate considerations for NRC, ASME NQA-1, and Section XI. In comparison, Alloy 617 is more studied with larger existing databases in air and helium, while Alloy 230 may have highly desired potentials but needs more exploration. To provide a sound technical basis for the material selection decision, more data should be generated to characterize behaviors of both alloys in creep, loading rate sensitivity, fatigue, creep-fatigue, crack resistance, toughness, product form dependency, and metallurgical stability.

1.
Haynes International, Inc.
, 2004, “
Haynes 25 Alloy
,” High-Temperature Alloys Brochure, Paper No. H-3057D.
2.
Haynes International, Inc.
, 1991, “
Haynes 25 Alloy
,” High-Temperature Alloys Brochure, Paper No. H-3001B.
3.
Special Metals Corporation
, 2005, “
Inconel Alloy 617
,” Paper No. SMC-029.
4.
Haynes International, Inc.
, 2007, “
Haynes 230 Alloy
,” High-Temperature Alloys Brochure, Paper No. H-3000H.
5.
Ren
,
W.
, and
Swindeman
,
R.
, 2006, “
A Review of Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications
,”
Proceedings of the 2006 ASME Pressure Vessels and Piping Division Conference
, PVP2006-ICPVT11–93128, July 23–27, Vancouver, BC Canada.
6.
Ren
,
W.
, and
Swindeman
,
R.
, 2005, “
Development of A Controlled Material Specification for Alloy 617 for Nuclear Applications
,” U.S. Department of Energy, Report No. ORNL/TM-2005/504.
7.
Brown
,
E. E.
, and
Muzyka
,
D. R.
, 1987,
Superalloys II
,
Wiley
,
New York
, p.
165
.
8.
Holt
,
R. T.
, and
Wallace
,
W.
, 1976, “
Impurities and Trace Elements in Nickel-Base Superalloys
,”
Int. Met. Rev.
0308-4590,
203
, pp.
1
24
.
9.
Ross
,
E. W.
, and
Sims
,
C. T.
, 1987,
Superalloys II
,
Wiley
,
New York
, p.
97
.
10.
Shogan
,
R. P.
, 1971, “
Neutron Irradiation Effects on the Tensile Properties of Inconel 718, Waspaloy and A286
,” Westinghouse Electric Corporation, Paper No. WANL-TME-2791.
11.
Bajaj
,
R.
,
Mills
,
W. J.
,
Lebo
,
M. R.
,
Hyatt
,
B. Z.
, and
Burke
,
M. G.
, 1995, “
Irradiation-Assisted Stress Corrosion Cracking of HTH Alloy X-750 and Alloy 625
,”
International Symposium on Environmental Degradation of Materials in Nuclear Power Plants: Water Reactors
, Breckenridge, CO, Aug. 6–10.
12.
American Society of Mechanical Engineers
, 2004, “
ASME Boiler and Pressure Vessel Code, an International Code
,” ASME, New York, NY.
13.
Task Force Very High-Temperature Design
, 1988, “
Draft Alloy 617 Code Case
,” Case N-47–28, Class 1 Components in Elevated Temperature Service, Section III, Division 1, Jul. 27.
14.
Schubert
,
F.
,
Breitbach
,
G.
, and
Nickel
,
H.
, 1993, “
German Structural Design Rule KTA 3221 for Metallic HTR-Components
,”
High-Temperature Service and Time-Dependent Failure
, PVP-Vol.
262
,
ASME
,
New York
, pp.
9
18
.
15.
American Society of Mechanical Engineers
, “
Quality Assurance Requirements for Nuclear Facility Applications
,” American National Standard, Paper No. ASME NQA-1-2000.
16.
Viswanathan
,
R.
,
Coleman
,
K.
,
Shingledecker
,
J.
,
Sarver
,
J.
,
Stanko
,
G.
,
Borden
,
M.
,
Mohn
,
W.
,
Goodstine
,
S.
, and
Perrin
,
I.
, 2006, “
Boiler Materials for Ultrasupercritical Coal Power Plants
,” U.S. Department of Energy, Report No. DE-FG26-01NT41175.
17.
Viswanathan
,
R.
,
Henry
,
J. F.
,
Tanzosh
,
J.
,
Stanko
,
G.
,
Shingledecker
,
J.
, and
Vitalis
,
B.
, 2005, “
U.S. Program on Materials Technology for Ultrasupercritical Coal Power Plants
,”
ECCC Creep Conference
, London, Sept. 12–14.
18.
1974, “
Nuclear Vessels in High Temperature Service
,” Code Case 1592, Section III, ASME Boiler Pressure Vessels Code, ASME, New York.
19.
Robinson
,
E.
, 1952, “
Effect of Temperature Variation on the Long-Time Rupture Strength of Steels
,”
Trans. ASME
0097-6822,
74
(
5
), pp.
777
780
.
20.
Miner
,
M. A.
, 1945, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
0021-8936,
12
(
3
), pp.
A159
A167
.
21.
Taira
,
S.
, 1962, “
Life Time of Structures Subjected to Varying Load and Temperature
,”
Creep in Structures
,
Academic
,
New York
.
22.
Palmgren
,
A.
, 1924, “
Die Lebensdauer von Kugellagern
,”
Z. Ver. Dtsch. Ing.
0341-7255,
68
, Heft 14, pp.
339
341
.
23.
McGreevy
,
T. E.
, and
Jetter
,
R. I.
, 2006, “
DOE-ASME Generation IV Materials Tasks
,”
Proceedings of ASME 2006 Pressure Vessels and Piping Division Conference
, PVP2006-ICPVT-11, July 23–27, Vancouver, BC Canada.
24.
McGreevy
,
T. E.
, and
Abou-Hanna
,
J.
, 2007, “
Applicability of Simplified Methods to Alloy 617 in Excess of 649°C
,”
Proceedings of ASME 2006 Pressure Vessels and Piping Division Conference
, PVP2007-26672, July 22–26, San Antonio, TX.
25.
Corum
,
J. M.
, and
Blass
,
J. J.
, 1991, “
Rules For Design of Alloy 617 Nuclear Components to Very High Temperatures
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
215
, pp.
147
153
.
26.
Ren
,
W.
,
Totemeier
,
T.
,
Santella
,
M.
,
Battiste
,
R.
, and
Clark
,
D.
, 2006, “
Status of Testing and Characterization of CMS Alloy 617 and Alloy 230
,” U.S. Department of Energy, Report No. ORNL/TM-2006-547.
27.
McCoy
,
H. E.
, and
King
,
J. F.
, 1985, “
Mechanical Properties of Inconel 617 and 618
,” U.S. Department of Energy, Report No. ORNL/TM-9337.
28.
Swindeman
,
R. W.
, and
Schubert
,
F.
, private communication.
29.
Kirchhofer
,
H.
,
Schubert
,
F.
, and
Nickel
,
H.
, 1984, “
Precipitation Behavior of Ni-Cr-22Fe-18Mo (HASTELLOY X) and Ni-Cr-2Co-12Mo (INCONEL 617) After Isothermal Aging
,”
Nucl. Technol.
0029-5450,
66
, pp.
139
148
.
30.
Santella
,
M. L.
, and
Ren
,
W.
, 2005, Oak Ridge National Laboratory, private communication.
31.
Mankins
,
W. L.
,
Hosier
,
J. C.
, and
Bassford
,
T. H.
, 1974, “
Microstructure and Phase Stability of INCONEL Alloy 617
,”
Metall. Trans.
0026-086X,
5
, pp.
2579
2590
.
32.
Kimball
,
G. F.
,
Lai
,
G. Y.
, and
Reynolds
,
G. H.
, 1976, “
Effects of Thermal Aging on Microstructural and Mechanical Properties of a Commercial Ni-Cr-Co-Mo Alloy (Inconel 617)
,”
Metall. Trans. A
0360-2133,
7A
, pp.
1951
1952
.
33.
Kihara
,
S.
,
Newkirk
,
J. B.
,
Ohtomo
,
A.
, and
Saiga
,
Y.
, 1980, “
Morphological Changes of Carbides During Creep and Their Effects on the Creep Properties of Inconel 617 at 1000C
,”
Metall. Trans. A
0360-2133,
11A
, pp.
1019
1031
.
34.
Wu
,
Q.
, and
Vasudevan
,
V. K.
, 2004, “
Characterization of Boiler Materials for Ultracritical Coal Power Plants
,” Annual Progress Report for Period Aug. 1, 2002 to July 30, 2003, under UT-Battelle Sub Contract Number 4000017043.
35.
Mansur
,
L. K.
, 1987, “
Mechanisms of Kinetics of Radiation Effects in Metals and Alloys
,”
Kinetics of Nonhomogeneous Processes: A Practical Introduction for Chemists, Biologists, Physicists, and Materials Scientists
,
G. R.
Freeman
, ed.,
Wiley
,
New York
, p.
377
463
.
36.
Shewmon
,
P. G.
, 1971, “
Radiation-Induced Swelling of Stainless Steel
,”
Science
0036-8075,
173
(
4001
), pp.
987
991
.
37.
Lewthwaite
,
G. W.
,
Mosedale
,
D.
, and
Ward
,
I. R.
, 1967, “
Irradiation Creep in Several Metals and Alloys at 100°C
,”
Nature (London)
0028-0836,
216
, pp.
472
473
.
38.
Harries
,
D. R.
, 1966, “
Neutron Irradiation Embrittlement of Austenitic Stainless Steels and Nickel Base Alloys
,”
J. Br. Nucl. Energy Soc.
0007-1587,
5
(
1–4
), pp.
74
87
.
39.
Harries
,
D. R.
, 1979, “
Neutron Irradiation-Induced Embrittlement in Type 316 and Other Austenitic Steels and Alloys
,”
J. Nucl. Mater.
0022-3115,
82
, pp.
2
21
.
40.
Mansur
,
L. K.
, and
Grossbeck
,
M. L.
, 1988, “
Mechanical Property Changes Induced in Structural Alloys by Neutron Irradiations With Different Helium to Displacement Ratios
,”
J. Nucl. Mater.
0022-3115,
155–157
, pp.
130
147
.
41.
Klueh
,
R. L.
, and
Vitek
,
J. M.
, 1983, “
The Resistance of 9Cr-1MoVNb and 12Cr-1MoVW Steel to Helium Embrittlement
,”
J. Nucl. Mater.
0022-3115,
117
, pp.
295
302
.
42.
Bloom
,
E. E.
, 1976, “
Irridiation Strengthening and Embrittlement
,”
Radiation Damage in Metals
,
S. D.
Hackneys
and
N. L.
Petersen
, eds.,
American Society for Metals
,
Metals Park, OH
, pp.
295
392
.
43.
Boothby
,
R. M.
, 1990, “
Modeling Grain Boundary Cavity Growth in Irridiated Nimonic PE16
,”
J. Nucl. Mater.
0022-3115,
171
, pp.
215
222
.
44.
Huntington Alloys, Inc.
, 1983, “
Inconel Alloy 617 Stress Rupture and Tensile Data Package
.”
45.
Baldwin
,
D. H.
,
Kimball
,
O. F.
, and
Williams
,
R. A.
, 1986, “
Design Data for Reference Alloys: Inconel 617 and Alloy 800H
,” General Electric Company for the Department of Energy, Contract No. DE-AC03-80ET34034.
46.
2007, “
Generation IV International Forum Very High Temperature Reactor System Materials Project–Project Plan
,” Revision 1.02, Aug.13.
47.
Ren
,
W.
, and
Swindeman
,
R. W.
, 2004, “
High Temperature Metallic Materials Test Plan for Generation IV Nuclear Reactors
,” U.S. Department of Energy, Report No. ORNL/TM-2005/507.
48.
2008, “
Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan
,” Revision 0, Apr., Report No. PLN-2804.
49.
Rittenhouse
,
P.
, and
Ren
,
W.
, 2005, “
Gen IV Materials Handbook Implementation Plan
,” U.S. Department of Energy, Report No. ORNL/TM-2005/77.
50.
Ren
,
W.
, and
Swindeman
,
R. W.
, 2005, “
Assessment of Existing Alloy 617 Data for Gen IV Materials Handbook
,” U.S. Department of Energy, Report No. ORNL/TM-2005/510.
51.
Ren
,
W.
, and
Rittenhouse
,
P.
, 2005, “
Construction of Web-Accessible Materials Handbook for Generation IV Nuclear Reactors
,”
Proceedings of ASME 2005 Pressure Vessels and Piping Division Conference
, PVP2005-71780, July 17–21, Denver, CO.
52.
Ren
,
W.
, and
Rittenhouse
,
P.
, 2005, “
Initial Development of the Gen IV Materials Handbook
,” U.S. Department of Energy, Report No. ORNL-GEN4/LTR-05/012.
53.
Ren
,
W.
, 2006, “
Gen IV Materials Handbook Architecture and System Design
,” U.S. Department of Energy, Report No. ORNL-GEN4/LTR-06–004.
54.
Ren
,
W.
, and
Luttrell
,
C.
, 2006, “
Gen IV Materials Handbook Beta Release for Structural and Functional Evaluation
,” U.S. Department of Energy, Report No. ORNL/GEN4/LTR-06–027.
55.
Ren
,
W.
, 2008, “
Development of Digital Materials Database for Design and Construction of New Power Plants
,”
Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants (ICAPP‘08), American Nuclear Society Annual Meeting
, Anaheim, CA, Jun. 8–12, Paper No. 8019.
56.
Ren
,
W.
, 2008, “
Summary Report on FY2008 Gen IV Materials Handbook Development
,” U.S. Department of Energy, Report No. ORNL/TM-2008/106.
57.
Prager
,
M.
, 1996, “
Proposed Implementation of Criteria for the Assignment of Allowable Stresses High in the Creep Range
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
336
, pp.
273
293
.
58.
American Society for Testing and Materials
, 2006, “
Standard Specification for UNS N06002, UNS N06230, UNS N12160, and UNS R30556 Plate, Sheet, and Strip
,”
Annual Book of ASTM Standards
, Vol.
02.04
.
59.
Ennis
,
F. J.
,
Mohr
,
K. P.
, and
Schuster
,
H.
, 1984, “
Effect of Carburizing Service Environments on the Mechanical Properties of High-Temperature Alloys
,”
Nucl. Technol.
0029-5450,
66
, pp.
363
368
.
60.
Schubert
,
F.
,
Bruch
,
U.
,
Cook
,
R.
,
Diehl
,
H.
,
Ennis
,
P. L.
,
Jakobeit
,
W.
,
Penkalla
,
H. J.
,
Heesen
,
E.
, and
Ullrich
,
G.
, 1984, “
Creep Rupture Behavior of Candidate Materials for Nuclear Process Heat Applications
,”
Nucl. Technol.
0029-5450,
66
, pp.
227
240
.
61.
Totemeier
,
T.
, and
Ren
,
W.
, 2006, “
Procurement and Initial Characterization of Alloy 230 and CMS Alloy 617
,” U.S. Department of Energy, Report No. INL/EXT-06-11290.
62.
Shingledecker
,
J. P.
,
Swindeman
,
R. W.
,
Wu
,
Q.
, and
Vasudevan
,
V. K.
, 2004, “
Creep Strength of High-Temperature Alloys for Ultrasupercritical Steam Boilers
,”
Proceedings of the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants
, Hilton Head, SC, Oct. 25–28.
63.
Ren
,
W.
, and
Nicholas
,
T.
, 2002, “
Effects and Mechanisms of Low Cycle Fatigue and Plastic Deformation on High Cycle Fatigue Limit Reduction in Nickel-Base Superalloy Udimet 720
,”
Mater. Sci. Eng., A
0921-5093,
332
, pp.
236
248
.
64.
Penkalla
,
H. J.
,
Nickel
,
H.
, and
Schubert
,
F.
, 1989, “
Multiaxial Creep of Tubes From Incoloy 800H And Inconel 617 Under Static and Cyclic Loading Conditions
,”
Nucl. Eng. Des.
0029-5493,
112
, pp.
279
289
.
65.
Penkalla
,
H. J.
,
Schubert
,
F.
, and
Nickel
,
H.
, 1993, “
Description Of Creep and Fatigue Exposed Tubes of Alloy 617
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
262
, pp.
221
224
.
66.
Totemeier
,
T. C.
, 2007, “
High-Temperature Creep-Fatigue of Alloy 617 Base Metal and Weldments
,”
Proceedings of ASME 2007 Pressure Vessels and Piping Division Conference
, PVP2007-26372, July 22–26, San Antonio, TX.
67.
Ren
,
W.
, 1995, “
Time-Dependent Fracture Mechanics Characterization of Haynes HR160 Superalloy
,” Ph.D. thesis, University of Tennessee, Knoxville.
68.
Hayner
,
G. O.
,
Shaber
,
E L.
.
,
Mizia
,
R. E.
,
Bratton
,
R. L.
,
Sowder
,
W K.
.
,
Wright,
R. N.
,
Windes
,
W E.
.
,
Totemeier
,
T. C.
,
Moore
,
K A.
.
,
Corwin
,
W. R.
,
Burchell
,
T. D.
,
Corum
,
J. M.
,
Klett
,
J. W.
,
Nanstad
,
R. K.
,
Snead
,
L. L.
,
Rittenhouse
,
P. L.
,
Swindeman
,
R. W.
,
Wilson
,
D. F.
,
McGreevy
,
T. E.
,
Jones
,
R.
, and
Gardner
,
F.
, 2004, “
Next Generation Nuclear Plant Materials Research and Development Program Plan
,” U.S. Department of Energy, Report No. INEEL/EXT-04-02347.
69.
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Shingledecker
,
J. P.
,
Evans
,
N. D.
,
Yamamoto
,
Y.
,
More
,
K. L.
, and
Lara-Curzio
,
E.
, 2006, “
Advanced Alloys for Compact, High-Efficiency, High-Temperature Heat-Exchangers
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
16
), pp.
3622
3630
.
70.
Maziasz
,
P. J.
,
Shingledecker
,
J. P.
,
Evans
,
N. D.
,
Yamamoto
,
Y.
,
More
,
K. L.
,
Trejo
,
R.
, and
Lara-Curzio
,
E.
, 2007, “
Creep Strength and Microstructure of AL20–25+Nb Alloy Sheets and Foils for Advanced Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
3
), pp.
798
805
.
You do not currently have access to this content.