The boundary element method is employed to determine polynomial influence coefficients of stress intensity factors, KI, for a semi-elliptical crack in internally pressurized thick-walled curved tubing. Numerical results of these coefficients are obtained for a wide range of geometric parameters; they are the bend radius ratio, cross-sectional radius ratio, angular extent of the bend, and relative crack depth. The use of influence coefficients allows KI solutions to be determined for different load cases without repetitive 3D stress analysis of the cracked body. This is demonstrated for the case of autofrettage where the effects on KI of the residual stresses arising from it are presented.

References

1.
Atluri
,
S. N.
, and
Kathiresan
,
K.
, 1979, “
3D Analyses of Surface Flaws in Thick-Walled Reactor Pressure-Vessels Using Displacement-Hybrid Finite Element Method
,”
Nucl. Eng. Des.
,
51
, pp.
163
176
.
2.
Tan
,
C. L.
, and
Fenner
,
R. T.
, 1980, “
Stress Intensity Factors for Semi-Elliptical Surface Cracks in Pressurized Cylinders Using the Boundary Integral Equation Method
,”
Int. J. Fract.
,
16
(
3
), pp.
233
245
.
3.
Pu
,
S. L.
, and
Hussain
,
M. A.
, 1981, “
Residual Stress Redistribution Caused by Notches and Cracks in a Partially Autofrettaged Tube
,”
ASME J. Pressure Vessel Technol.
,
103
, pp.
302
306
.
4.
Tan
,
C. L.
, and
Shim
,
M. L.
, 1986, “
Stress Intensity Factor Influence Coefficients for Internal Surface Cracks in Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
24
, pp.
49
72
.
5.
Perl
,
M.
,
Levy
,
C.
, and
Wang
,
J.
, 1997, “
Interaction Effects on the 3D Stress Intensity Factor of Combined Arrays of Radial and Longitudinal Coplanar Cracks in an Internally Pressurized Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
119
, pp.
167
174
.
6.
Parker
,
A. P.
, and
Tan
,
C. L.
, 2006, “
Stress Intensity Factors for Straight and Curved-Fronted Cracks in Thick Cylinders
,”
ASME J. Pressure Vessel Technol.
,
128
, pp.
227
232
.
7.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
, 2008, “
The Bauschinger Effect on 3D SIF’s for Networks of Radial and Longitudinal Coplanar Semi-Elliptical Internal Surface Cracks in Autofrettaged Pressurized Thick-Walled Cylinders
,”
Comput. Model. Eng. Sci.
,
5
, pp.
95
110
.
8.
Chattopadhyay
,
J.
,
Dutta
,
B. K.
,
Kushwaha
,
H. S.
,
Mahajan
,
S. C.
, and
Kakodkar
,
A.
, 1994, “
A Database to Evaluate Stress Intensity Factors of Elbows With Through-Wall Flaws Under Combined Internal Pressure and Bending Moment
,”
Int. J. Pressure Vessels Piping
,
60
, pp.
71
83
.
9.
Chattopadhyay
,
J.
,
Dutta
,
B. K.
,
Kushwaha
,
H. S.
,
Mahajan
,
S. C.
, and
Kakodkar
,
A.
, 1995, “
Limit Load Analysis and Safety Assessment of an Elbow With a Circumferential Crack Under a Bending Moment
,”
Int. J. Pressure Vessels Piping
,
62
, pp.
109
116
.
10.
Yahiaoui
,
K.
,
Moreton
,
D. N.
, and
Moffat
,
D. G.
, 2002, “
Evaluation of Limit Load Data for Cracked Pipe Bends Under Opening Moment and Comparisons With Existing Solutions
,”
Int. J. Pressure Vessels Piping
,
79
, pp.
27
36
.
11.
Saxena
,
S.
, and
Ramakrishnan
,
N.
, 2007, “
Characterizing the Crack Initiation Load in Circumferentially Through-Wall Cracked Elbows Under Bending Load
,”
Int. J. Pressure Vessels Piping
,
84
, pp.
493
501
.
12.
Plante
,
K.
, and
Tan
,
C. L.
, 2009, “
Elastic Fracture Mechanics Analysis of Curved Tubing With a Semi-Elliptical Crack
,”
J. Strain Anal.
,
44
, pp.
297
304
.
13.
Colle
,
A.
,
Redekop
,
D.
, and
Tan
,
C. L.
, 1987, “
Elastostatic Analysis of Problems Involving Complex Toroidal Geometries
,”
J. Strain Anal.
,
22
, pp.
195
202
.
14.
Luchi
,
M. L.
, and
Poggialini
,
A.
, 1983, “
Computation of 3-Dimensional Stress Intensity Factors Using Special Boundary Elements
,”
Proceedings of 5th International Conference on BEM
,
C. A.
Brebbia
, ed.,
Berlin
,
Springer-Verlag
, pp.
461
470
.
You do not currently have access to this content.