Flow-induced vibration in a steam generator may cause tube–support interaction. This long term interaction is a challenging problem as it may lead to tube fretting-wear and possibly tube failure. An estimation of the normal impact force during tube–support interaction is important to precisely quantify material removal. A precise study of the interaction presents several challenges as a result of the many parameters involved during the interaction, including fluid forces, number and type of supports, and geometry of contact. The present study investigates tube–support interaction using a simple experimental rig, consisting of a tube interacting with a flat support positioned at the tube midspan. The work investigates the normal force–displacement relationship and arrives at an estimation of empirical parameters, associated with the nonlinearity in this relationship. The resulting empirical model is used to simulate tube–support interaction for various gap sizes and excitation forces. Comparison with experiments indicates that using the nonlinear spring–damper model significantly reduces the predicted impact force error, to less than 20%, when compared to experimental tests. Various energy dissipation mechanisms during tube–support interaction, including impact and structural damping are also studied. The effect of impact damping on the tube response is investigated, using the Hunt and Crossley model. Investigation on structural damping suggests that using a higher effective structural damping during tube–support contact, depending upon tube–support gap size, improves the accuracy of the estimation of the tube response, at least for moderate gap sizes.

References

1.
Rogers
,
R. J.
, and
Pick
,
R. J.
,
1977
, “
Factors Associated With Support Plate Forces Due to Heat-Exchanger Tube Vibratory Contact
,”
Nucl. Eng. Des.
,
44
(
2
), pp.
247
253
.10.1016/0029-5493(77)90031-0
2.
Sauve
,
R. G.
, and
Teper
,
W. W.
,
1987
, “
Impact Simulation of Process Equipment Tubes and Support Plates: A Numerical Algorithm
,”
ASME J. Pressure Vessel Technol.
,
109
(
1
), pp.
70
79
.10.1115/1.3264858
3.
Tan
,
X.
, and
Rogers
,
R.
,
1996
, “
Dynamic Friction Modelling in Heat Exchanger Tube Simulations
,”
Flow-Induced Vib.
,
328
, pp.
347
358
.
4.
Hassan
,
M.
,
2000
, “
Dynamics of Loosely Supported Heat Exchanger Tubes
,” Ph.D. thesis, McMaster University, Hamilton, Canada.
5.
Hassan
,
M. A.
,
Weaver
,
D. S.
, and
Dokainish
,
M. A.
,
2002
, “
A Simulation of the Turbulence Response of Heat Exchanger Tubes in Lattice-Bar Supports
,”
J. Fluids Struct.
,
16
(
8
), pp.
1145
1176
.10.1006/jfls.2002.0468
6.
Hassan
,
M. A.
,
Weaver
,
D. S.
, and
Dokainish
,
M. A.
,
2003
, “
The Effects of Support Geometry on the Turbulence Response of Loosely Supported Heat Exchanger Tubes
,”
J. Fluids Struct.
,
18
(
5
), pp.
529
554
.10.1016/j.jfluidstructs.2003.08.011
7.
Hassan
,
M. A.
,
Weaver
,
D. S.
, and
Dokainish
,
M. A.
,
2005
, “
A New Tube/Support Impact Model for Heat Exchanger Tubes
,”
J. Fluids Struct.
,
21
(
5–7
), pp.
561
577
.10.1016/j.jfluidstructs.2005.07.016
8.
Hassan
,
M.
, and
Hayder
,
M.
,
2008
, “
Modelling of Fluidelastic Vibrations of Heat Exchanger Tubes With Loose Supports
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2507
2520
.10.1016/j.nucengdes.2008.05.014
9.
Tariku
,
F. A.
, and
Rogers
,
R. J.
,
2001
, “
Improved Dynamic Friction Models for Simulation of One-Dimensional and Two-Dimensional Stick-Slip Motion
,”
ASME J. Tribol.
,
123
(
4
), pp.
661
669
.10.1115/1.1331057
10.
Azizian
,
R.
, and
Muriethi
,
N. W.
,
2014
, “
Numerical Analysis of Fretting-Wear With a Hybrid Elastoplastic Friction Model
,”
ASME J. Pressure Vessel Technol.
,
136
(
3
), p.
031303
.10.1115/1.4025446
11.
Axisa
,
F.
,
Anunes
,
J.
, and
Villard
,
B.
,
1988
, “
Overview of Numerical Methods for Predicting Flow-Induced Vibration and Wear of Heat-Exchanger Tubes
,” Flow-Induced Vibration,
ASME J. Pressure Vessel Technol.
,
110
(1), pp.
6
14
.10.1115/1.3265570
12.
Toorani
,
M.
,
Pan
,
L.
,
Li
,
R.
,
Idvorian
,
N.
, and
Vincent
,
B.
,
2009
, “
Advanced Nonlinear Flow-Induced Vibration and Fretting-Wear Analysis Capabilities
,”
6th CNS International Steam Generator Conference
,
Toronto
, Canada, Nov. 8–11.
13.
Rubiolo
,
P. R.
,
2006
, “
Probabilistic Prediction of Fretting-Wear Damage of Nuclear Fuel Rods
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1628
1640
.10.1016/j.nucengdes.2006.04.023
14.
Bathe
,
K. J.
,
1982
,
Finite Element Procedures in Engineering Analysis
,
Prentice-Hall
,
NJ
.
15.
Subbaraj
,
K.
, and
Dokainish
,
M. A.
,
1989
, “
A Survey of Direct Time-Integration Methods in Computational Structural Dynamics II. Implicit Methods
,”
Comput. Struct.
,
32
(
6
), pp.
1387
1401
.10.1016/0045-7949(89)90315-5
16.
Antunes
,
J.
,
Axisa
,
F.
,
Beaufils
,
B.
, and
Guilbaud
,
D.
,
1990
, “
Coulomb Friction Modelling in Numerical Simulations of Vibration and Wear Work Rate of Multispan Tube Bundles
,”
J. Fluids Struct.
,
4
(
3
), pp.
287
304
.10.1016/S0889-9746(05)80016-7
17.
Davies
,
H. G.
, and
Rogers
,
R. J.
,
1979
, “
The Vibration of Structures Elastically Constrained at Discrete Points
,”
J. Sound Vib.
,
63
(
3
), pp.
437
447
.10.1016/0022-460X(79)90686-2
18.
Goyal
,
S.
,
Pinson
,
E. N.
, and
Sinden
,
F. W.
,
1994
, “
Simulation of Dynamics of Interacting Rigid Bodies Including Friction I: General Problem and Contact Model
,”
Eng. Comput.
,
10
(
3
), pp.
162
174
.10.1007/BF01198742
19.
Goldsmith
,
W.
,
1960
,
The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold Ltd.
,
Bungay, Suffolk
.
20.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
.
21.
Axisa
,
F.
,
Desseaux
,
A.
, and
Gibert
,
R. J.
,
1984
, “
Experimental Study of Tube/Support Impact Forces in Multi-Span PWR Steam Generator Tubes
,”
Symposium on Flow-Induced Vibrations
,
New Orleans, LA
, Dec. 9–13, Vol.
6
, pp.
139
148
.
22.
Hunt
,
K. H
., and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
23.
Werner
,
S.
, and
Robert
,
S.
,
2008
, “
Impacts on Beams
,”
Computational Structural Dynamics and Earthquake Engineering
,
Taylor & Francis
, Leiden, The Netherlands, pp.
137
148
.
24.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University
,
Cambridge
, UK.
25.
Thomson
,
M. G.
,
Bishop
,
S. R.
, and
Foale
,
S.
,
1994
, “
An Experimental Study of Low Velocity Impact
,”
Mach. Vib.
,
3
, pp.
10
17
.
26.
de Weger
,
J.
,
Binks
,
D.
,
Molenaar
,
J.
, and
van de Water
,
W.
,
1996
, “
Generic Behavior of Grazing Impact Oscillators
,”
Phys. Rev. Lett.
,
76
(
21
), pp.
3951
3954
.10.1103/PhysRevLett.76.3951
27.
Wagg
,
D. J.
, and
Bishop
,
S. R.
,
2000
, “
A Note on Modeling Multi-Degree-of-Freedom Vibro-Impact Systems Using Coefficient of Restitution Models
,”
J. Sound Vib.
,
236
(
1
), pp.
176
184
.10.1006/jsvi.2000.2940
28.
Bao
,
Z.
,
Goyal
,
S.
,
Leu
,
L.-J.
, and
Mukherjee
,
S.
,
2004
, “
The Role of Beam Flexibility and Ground Contact Model in the Clattering of Deformable Beams
,”
ASME J. Dyn. Syst. Meas. Contr.
,
126
(
2
), pp.
421
425
.10.1115/1.1771694
29.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
307
316
.10.1115/1.2788865
30.
Weaver
,
D. S.
, and
Schneider
,
W.
,
1983
, “
The Effect of Flat Bar Supports on the Crossflow Induced Response of Heat Exchanger U-Tubes
,”
ASME J. Eng. Power
,
105
(
4
), pp.
775
781
.10.1115/1.3227481
31.
Chen
,
S.
,
Jendrzjczyk
,
J.
, and
Wambsganss
,
M.
,
1985
, “
Dynamics of Tubes in Fluid With Tube–Baffle Interaction
,”
ASME J. Pressure Vessel Technol.
,
107
(
1
), pp.
7
17
.10.1115/1.3264410
32.
Yetisir
,
M.
, and
Fisher
,
N. J.
,
1997
, “
Prediction of Pressure Tube Fretting-Wear Damage due to Fuel Vibration
,”
Nucl. Eng. Des.
,
176
(3), pp.
261
271
.10.1016/S0029-5493(97)00149-0
33.
Haslinger
,
K. H.
, and
Steininger
,
D. A.
,
1995
, “
Experimental Characterization of Sliding and Impact Friction Coefficients Between Steam Generator Tubes and Avb Supports
,”
J. Sound Vib.
,
181
(
5
), pp.
851
871
.10.1006/jsvi.1995.0174
34.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
,
Fisher
,
N. J.
,
Yetisir
,
M.
, and
Smith
,
B. A. W.
,
1998
, “
Flow-Induced Vibration: Recent Findings and Open Questions
,”
Nucl. Eng. Des.
,
185
(
2–3
), pp.
249
276
.10.1016/S0029-5493(98)00238-6
35.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview–Part 1: Flow, Damping, Fluidelastic Instability
,”
J. Fluids Struct.
,
18
(
5
), pp.
469
483
.10.1016/j.jfluidstructs.2003.08.007
36.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview–Part 2: Vibration Response, Fretting-Wear, Guidelines
,”
J. Fluids Struct.
,
18
(
5
), pp.
485
500
.10.1016/j.jfluidstructs.2003.08.008
37.
Azizian
,
R.
,
Mureithi
,
N. W.
, and
Sawadogo
,
T. P.
,
2009
, “
Dynamic Modeling of Heat Exchanger Tube-to-Support Interaction
,”
6th CNS International Steam Generator Conference
,
Toronto
, Canada, Nov. 8–11.
38.
Nowlan
,
I.
,
Ross
,
A.
, and
Pettigrew
,
M. J.
,
2009
, “
Dynamic Interaction Between a Straight Tube and an Anti-Vibration Bar
,”
ASME
Paper No. PVP2009-77804. 10.1115/PVP2009-77804
39.
Fisher
,
N. J.
,
Olesen
,
M. J.
,
Rogers
,
R. J.
, and
Ko
,
P. L.
,
1989
, “
Simulation of Tube-to-Support Dynamic Interaction in Heat Exchange Equipment
,”
ASME J. Pressure Vessel Technol.
,
111
(
4
), pp.
378
384
.10.1115/1.3265694
40.
Hassan
,
M. A.
, and
Rogers
,
R. J.
,
2005
, “
Friction Modelling of Preloaded Tube Contact Dynamics
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2349
2357
.10.1016/j.nucengdes.2005.05.004
41.
Delaune
,
X.
,
Antunes
,
J.
,
Debut
,
V.
,
Piteau
,
P.
, and
Borsoi
,
L.
,
2010
, “
Modal Techniques for Remote Identification of Nonlinear Reactions at Gap-Supported Tubes Under Turbulent Excitation
,”
ASME J. Pressure Vessel Technol.
,
132
(
3
), p.
031801
.10.1115/1.4001077
42.
Babistky
,
V. I.
,
1998
,
Theory of Vibro-Impact Systems and Applications
,
Springer
, Berlin,
Germany
.
43.
Axisa
,
F.
,
Antunes
,
J.
, and
Villard
,
B.
,
1988
, “
Overview of Numerical Methods for Predicting Flow-Induced Vibration
,”
ASME J. Pressure Vessel Technol.
,
110
(
1
), pp.
6
14
.10.1115/1.3265570
44.
Morley
,
L. S. D.
,
1960
, “
The Thin-Walled Circular Cylinder Subjected to Concentrated Radial Loads
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
24
37
.10.1093/qjmam/13.1.24
45.
Lesieutre
,
G. A.
,
2009
, “
How Membrane Loads Influence the Modal Damping of Flexural Structures
,”
AIAA J.
,
47
(
7
), pp.
1642
1646
.10.2514/1.37618
46.
Au Yang
,
M. K.
, and
Burgess
,
J. A.
,
2007
, “
Critical Velocity of a Nonlinearly Supported Multispan Tube Bundle
,”
ASME J. Pressure Vessel Technol.
,
129
(
3
), pp.
535
540
.10.1115/1.2748836
You do not currently have access to this content.