The objective of this study was to investigate low-cycle fatigue and ratcheting responses of elbows through experimental and analytical studies. Low-cycle fatigue and ratcheting damage accumulation in piping components may occur under repeated reversals of loading induced by earthquake and/or thermomechanical operation. Ratcheting and fatigue damage accumulation can cause failure of piping systems through fatigue cracks or plastic buckling. However, the ratcheting damage induced failures are yet to be understood clearly; consequently, ASME Code design provisions against ratcheting failure continue to be a controversial issue over the last two decades. A systematic set of piping component experimental responses involving ratcheting and a computational tool to simulate these responses will be essential to rationally address the issue. Development of a constitutive model for simulating component ratcheting responses remains to be a challenging problem. In order to develop an experimentally validated constitutive model, a set of elbow experiments was conducted. The loading prescribed in the experiments involved displacement-controlled or force-controlled in-plane cyclic bending with or without internal pressure. Force, displacement, internal pressure, elbow diameter change, and strains at four locations of the elbow specimens were recorded. This article presents and discusses the results from the experimental study. A sister article evaluates seven different constitutive models against simulating these elbow ratcheting and fatigue responses.

References

1.
EPRI
,
1992
, “
Piping and Fitting Dynamic Reliability Program
,” Vol.
2
—Component Test Report, EPRI Contract No. RP 1543-15.
2.
EPRI
,
1994
, “
EPRI Fatigue Management Handbook
,” Vol.
2
—Fatigue Screening Criteria, EPRI Contract No. TR-104534-V2.
3.
Miller
,
P. R.
,
1959
, “
Thermal Stress Ratchet Mechanism in Pressure Vessels
,”
ASME J. Basic Eng.
,
81
(
Series D
), pp.
190
196
.
4.
Parkes
,
E. W.
,
1964
, “
Structural Effects of Repeated Thermal Loading
,”
Thermal Stress
,
P. P.
Benham
, and
R.
Hoyle
, eds.,
Sir Isaac Pitman & Sons Ltd.
,
London, UK
.
5.
Edmunds
,
H. G.
, and
Beer
,
F. J.
,
1961
, “
Notes on Incremental Collapse in Pressure Vessels
,”
J. Mech. Eng. Sci.
,
3
(
3
), pp.
187
199
.10.1243/JMES_JOUR_1961_003_026_02
6.
Bree
,
J.
,
1967
, “
Elastic Plastic Behavior of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes
,”
J. Strain Anal.
,
2
(
3
), pp.
226
238
.10.1243/03093247V023226
7.
Bree
,
J.
,
1968
, “
Incremental Growth due to Creep and Plastic Yielding of Thin Tubes Subjected to Internal Pressure and Cyclic Thermal Stresses
,”
J. Strain Anal.
,
3
(
2
), pp.
122
177
.10.1243/03093247V032122
8.
Dunne
,
F. P. E.
,
Puttergill
,
D. B.
,
HayHurst
,
D. R.
, and
Mabbutt
,
Q. J.
,
1993
, “
Experimental Investigation of Cyclic Plasticity Continuum Damage Evolution in an Engineering Component Subjected to Thermal Loading
,”
J. Strain Anal.
,
28
(
4
), pp.
78
86
.10.1243/03093247V284263
9.
Ponter
,
A. R. S.
, and
Carter
,
K. F.
,
1989
, “
Upper Bound Methods for Use in the Design and Assessment of Axisymmetric Thin Shells Subjected to Cyclic Thermal Loading
,”
Nucl. Eng. Des.
116
(
3
), pp.
239
254
.10.1016/0029-5493(89)90085-X
10.
Maier
,
G.
,
Pan
,
L. G.
, and
Perego
,
U.
,
1993
, “
Geometric Effects on Shakedown and Ratchetting of Axisymmetric Cylindrical Shells Subjected to Variable Thermal Loading
,”
Eng. Struct.
,
15
(
6
), pp.
453
465
.10.1016/0141-0296(93)90063-A
11.
Jahanian
,
S.
,
1997
, “
On the Incremental Growth of Mechanical Structures Subjected to Cyclic Thermal and Mechanical Loading
,”
Int. J. Pressure Vessel Piping
,
71
(
2
), pp.
121
127
.10.1016/S0308-0161(96)00054-3
12.
Tagart
,
S. W.
,
1972
, “
Plastic Fatigue Analysis of Pressure Component
,”
Pressure Vessels and Piping: Design and Analysis; A Decade of Progress, Vol. 1—Analysis
,
G. J.
Bohm
,
R. L.
Cloud
,
L. C.
Hsu
,
D. H.
Pai
, and
R. F.
Reddy
, eds.,
ASME
,
New York
.
13.
Griffith
,
W. I.
, and
Rodabaugh
,
E. C.
,
1975
, “
Tests at Room Temperature and 1100 F on a 4” Sch. 10 Elbow-Pipe Assembly Subjected to In-Plane Moment Loading
,”
2nd National Congress on Pressure Vessels and Piping
, San Francisco, CA, June 23–27, pp.
1
37
. Available at: http://www.osti.gov/scitech/biblio/4227063/
14.
Greenstreet
,
W. L.
,
1978
, “
Experimental Study of Plastic Responses of Pipe Elbows
,” Report No. ORNL/NUREG-24.
15.
Tagart
,
S. W.
,
Tang
,
Y. K.
,
Hwang
,
H. L.
,
Merz
,
K. L.
,
Guzy
,
D. J.
, and
DeVito
,
V.
,
1988
, “
Seismic Analysis and Testing of Piping Systems and Components
,”
ASME PVP
,
144
, pp.
229
236
.
16.
Suzuki
,
N.
, and
Nasu
,
M.
,
1989
, “
Non-Linear Analysis of Welded Elbows Subjected to In-Plane Bending
,”
Comput. Struct.
,
32
(
3/4
), pp.
871
881
.10.1016/0045-7949(89)90371-4
17.
Acker
,
D.
,
Touboul
,
F.
, and
Autrusson
,
B.
,
1992
, “
Experimental Analysis of Ratcheting in Elbows
,”
ASME PVP
,
235
, pp.
87
91
.
18.
ASME
,
1992
,
ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB-3600 Piping Design
,
The American Society of Mechanical Engineers
,
New York
.
19.
Carmichael
,
G. D. T.
,
1990
, “
The CEGB Aseismic Piping Research Programme
,”
ASME PVP
, pp.
183
193
.
20.
Beaney
,
E. M.
,
1990
, “
Failure of Pipework Subjected to Seismic Loading
,” Nuclear Electric PLC Technology Division Report, Report No. TD/B/6315/R90.
21.
Beaney
,
E. M.
,
1991
, “
Failure of Elbows Under Seismic Loading
,” Nuclear Electric Report, Report No. TD/SID/REP/0134.
22.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
1996
, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic In-Plane Bending
,”
J. Strain Anal.
,
31
(
2
), pp.
135
151
.10.1243/03093247V312135
23.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
1996
, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic Out-of-Plane Bending
,”
J. Strain Anal.
,
31
(
2
), pp.
153
166
.10.1243/03093247V312153
24.
Moreton
,
D. N.
,
Yahiaoui
,
K.
, and
Moffat
,
D. G.
,
1996
, “
Onset of Ratcheting in Pressurized Piping Elbows Subjected to In-Plane Bending Moments
,”
Int. J. Pressure Vessel Piping
,
68
(
1
), pp.
73
79
.10.1016/0308-0161(94)00041-7
25.
Kobayashi
,
H.
,
Yokoi
,
R.
, and
Fujiwaka
,
T.
,
1995
, “
Experimental Studies of Ratcheting of Pressurized Elbows
,”
ASME PVP
,
301
, pp.
89
94
.
26.
Touboul
,
F
.,
1995
, “
Piping Seismic Design Criterion: Ratcheting-Fatigue Behavior Under Cyclic Loadings
,”
Transactions of the 13th International Conference on Structural Mechanics in Reactor Technology (SMiRT 13)
,
Porto Alegre
,
Brazil
, Aug. 13–18, pp.
149
154
.
27.
Touboul
,
F.
,
Sollogoub
,
P.
, and
Blay
,
N.
,
1998
, “
Simplified Methods for the Evaluation of the Seismic Behavior of Piping System for Criteria Application
,”
ASME PVP
,
364
, pp.
117
127
.
28.
Tagart
,
S. W.
,
Tang
,
Y. K.
,
Guzy
,
D. J.
, and
Ranganath
,
S.
,
1990
, “
Piping Dynamic Reliability and Code Rule Change Recommendations
,”
Nucl. Eng. Des.
,
123
(
2–3
), pp.
373
385
.10.1016/0029-5493(90)90258-Y
29.
Garud
,
Y. S.
,
Durlofsky
,
H.
, and
Tagart
,
S. W.
,
1993
, “
Analysis and Prediction of Ratcheting-Fatigue: Comparison With Tests and Code Rules
,”
ASME PVP
,
266
, pp.
23
32
.
30.
Boussaa
,
D.
,
Dang Van
,
K.
,
Labbe
,
P.
, and
Tang
,
H. T.
,
1994
, “
Fatigue-Seismic Ratcheting Interactions in Pressurized Elbows
,”
ASME J. Pressure Vessel Technol.
,
116
(
4
), pp.
396
402
.10.1115/1.2929607
31.
Hwang
,
H. L.
, and
Ranganath
,
S.
,
1995
, “
Pipe and Elbow Ratcheting Strain Effects on Predicted Fatigue Failure
,”
ASME PVP
,
312
, pp.
13
26
.
32.
Chen
,
W. P.
,
Jaquay
,
K. R.
,
Chokshi
,
N. C.
, and
Terao
,
D.
,
1995
, “
An Assessment of Seismic Margins in Nuclear Plant Piping
,”
Proceedings of the 13th SMiRT
, Vol.
III
, Porto Alegre, Brazil, Aug. 13–18, pp.
507
512
.
33.
Zhao
,
Y.
,
Wilson
,
P. R.
,
Stevenson
,
J. D.
,
Tang
,
H. T.
, and
Gasparini
,
D. A.
,
1995
, “
Ratcheting in Cyclic Plasticity of a Pipe Elbow Loaded by Prescribed Multiaxial Stochastic Displacement Time Series
,”
ASME PVP
,
312
, pp.
1
12
.
34.
ASME
,
1995
,
ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB-3600 Piping Design
,
The American Society of Mechanical Engineers
,
New York
.
35.
Slagis
,
G. C.
,
1995
, “
Experimental Data on Seismic Response of Piping, Seismic Engineering
,”
ASME PVP
,
312
, pp.
27
40
.
36.
Slagis
,
G. C.
,
1996
, “
Experimental Data on Seismic Response of Piping, Part 2
,”
ASME 8th International Conference on Pressure Vessel Technology
, Vol.
2
, Montreal, Canada, July 21–26, pp.
481
487
.
37.
Slagis
,
G. C.
,
1997
, “
Experimental Data on Seismic Response of Piping, Part 3, Seismic Engineering
,”
ASME PVP
,
345
, pp.
163
171
.
38.
Slagis
,
G. C.
,
1998
, “
Experimental Data on Seismic Response of Piping, Part 4, Seismic Engineering
,”
ASME PVP
,
364
, pp.
141
148
.
39.
Jaquay
,
K.
,
1998
, “
Results and Findings of the NRC Seismic Analysis of Piping Program, Seismic Engineering
,”
ASME PVP
,
364
, pp.
129
139
.
40.
ASME
,
2010
,
ASME Boiler and Pressure Vessel Code, Section III (Div. 1) & VIII (Div. 2)
,
The American Society of Mechanical Engineers
,
New York
.
41.
Markl
,
A. R. C.
,
1952
, “
Fatigue Tests of Piping Components
,”
Trans. ASME
,
74
(
3
), pp.
287
303
.
42.
Rodabaugh
,
E. C.
, and
Wood
,
G. E.
,
1998
,
Report on Fatigue, Moment Capacity and Burst Tests of Induction Bends
,
International Piping Systems, Ltd.
,
Port Allen, LA
.
43.
Report No. NUREG-75/067,
1975
, “
Technical Report Investigation and Evaluation of Cracking in Austenitic Stainless Steel Piping of Boiling Water Reactor Plants
,” Pipe Cracking Study Group, Nuclear Regulatory Commission, Reproduced by National Technical Information Services, Report No. PB-246-645.
44.
Imazu
,
A.
,
Miura
,
R.
,
Nakumura
,
K.
,
Nagata
,
T.
, and
Okabayashi
,
K.
,
1977
, “
Elevated Temperature Elastic–Plastic–Creep Test of an Elbow Subjected to In-Plane Moment Loading
,”
ASME J. Pressure Vessel Technol.
,
99
(
2
), pp.
291
297
.10.1115/1.3454534
45.
Bolt
,
S. E.
, and
Greenstreet
,
W. L.
,
1971
, “
Experimental Determination of Plastic Collapse Loads for Pipe Elbows
,”
ASME
Paper No. 71-PVP-37.
46.
Hilsenkopf
,
P.
,
Boneh
,
B.
, and
Sollogoub
,
P.
,
1988
, “
Experimental Study of Behavior and Functional Capability of Ferritic Steel Elbows and Austenitic Stainless Steel Thin-Walled Elbows
,”
Int. J. Pressure Vessel Piping
,
33
(
2
), pp.
111
128
.10.1016/0308-0161(88)90065-8
47.
Bhandari
,
S.
,
Fortmann
,
M.
,
Grueter
,
L.
,
Heliot
,
J.
,
Meyer
,
P.
,
Percie Du Sert
,
B.
,
Prado
,
A.
, and
Zeibig
,
H.
,
1986
, “
Crack Propagation in a LMFBR Elbow
,”
Nucl. Eng. Des.
,
91
(
2
), pp.
107
119
.10.1016/0029-5493(86)90199-8
48.
Ueda
,
M.
,
Kano
,
T.
, and
Yoshitoshi
,
A.
,
1984
, “
Thermal Ratcheting Criteria and Behavior of Piping Elbows
,”
Proceedings of 5th International Conference on Pressure Vessel Technology
,
San Francisco
,
CA
, Sept. 9–14, pp.
16
26
.
49.
Ueda
,
M.
,
Kano
,
T.
, and
Yoshitoshi
,
A.
,
1990
, “
Thermal Ratcheting Criteria and Behavior of Piping Elbows
,”
ASME J. Pressure Vessel Technol.
,
112
(
1
), pp.
71
75
.10.1115/1.2928590
50.
Robertson
,
A.
,
Hongjun
,
L.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and In-plane Bending
,”
Int. J. Pressure Vessel Piping
,
82
(
5
), pp.
407
416
.10.1016/j.ijpvp.2004.09.005
51.
Suzuki
,
K.
,
Namita
,
Y.
,
Abe
,
H.
,
Ichihashi
,
I.
,
Suzuki
,
K.
,
Ishiwata
,
M.
,
Fujiwaka
,
T.
, and
Yokota
,
H.
,
2002
, “
Seismic Proving Test of Ultimate Piping Strength
,” ICONE-10, Paper No. 22225.
52.
Ayob
,
A. B.
,
Moffat
,
D. G.
, and
Mistry
,
J.
,
2003
, “
The Interaction of Pressure, In-Plane Moment and Torque Loadings on Piping Elbows
,”
Int. J. Pressure Vessel Piping
,
80
(
12
), pp.
861
869
.10.1016/j.ijpvp.2003.09.001
53.
Chen
,
X.
,
Gao
,
B.
, and
Chen
,
G.
,
2006
, “
Ratcheting Study of Pressurized Elbows Subjected to Reversed In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
525
532
.10.1115/1.2349562
54.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Park
,
C.-Y.
,
2008
, “
Shakedown Limit Loads for Elbows Under Internal Pressure and Cylic In-Plane Bending
,”
Int. J. Pressure Vessel Piping
,
85
(
6
), pp.
394
405
.10.1016/j.ijpvp.2007.11.009
55.
Shi
,
H.
,
Chen
,
G.
,
Wang
,
Y.
, and
Chen
,
X.
,
2013
, “
Ratcheting Behavior of Pressurized Elbow Pipe With Local Wall Thinning
,”
Int. J. Pressure Vessels Piping
,
102–103
, pp.
14
23
.10.1016/j.ijpvp.2012.12.002
56.
Vishnuvardhan
,
S.
,
Raghava
,
G.
,
Ganhdi
,
P.
,
Saravanan
,
M.
,
Goyal
,
S.
,
Arora
,
P.
,
Gupta
,
S. K.
, and
Bhasin
,
V.
,
2013
, “
Ratcheting Failure of Pressurized Pipes and Elbows Under Reversed Bending
,”
Int. J. Pressure Vessels Piping
,
105–106
, pp.
79
89
.10.1016/j.ijpvp.2013.03.005
57.
Valeris
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2013
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011207
.10.1115/1.4007293
58.
Takahashi
,
K.
,
Tsunoi
,
S.
,
Hara
,
T.
,
Ueno
,
T.
,
Mikami
,
A.
,
Takada
,
H.
,
Ando
,
K.
, and
Shiratori
,
M.
,
2010
, “
Experimental Study of Low-Cycle Fatigue of Pipe Elbows With Local Wall Thinning and Life Estimations Using Finite Element Analysis
,”
Int. J. Pressure Vessels Piping
,
87
(
5
), pp.
211
219
.10.1016/j.ijpvp.2010.03.022
59.
Urabe
,
Y.
,
Takahashi
,
K.
, and
Ando
,
K.
,
2012
, “
Low Cycle Fatigue Behavior and Seismic Assessment for Elbow Pipe Having Local Wall Thinning
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041801
.10.1115/1.4005870
60.
Chen
,
X.
,
Chen
,
X.
,
Yu
,
D.
, and
Gao
,
B.
,
2013
, “
Recent Progresses in Experimental Investigation and Finite Element Analysis of Ratcheting in Pressurized Piping
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
113
142
.10.1016/j.ijpvp.2012.10.008
61.
Hassan
,
T.
,
Zhu
,
Y.
, and
Matzen
,
V. C.
,
1998
, “
Improved Ratcheting Analysis of Piping Components
,”
Int. J. Pressure Vessel Piping
,
75
(
8
), pp.
643
652
.10.1016/S0308-0161(98)00070-2
62.
Bari
,
S.
, and
Hassan
,
T.
,
2000
, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
,
16
(
3–4
), pp.
381
409
.10.1016/S0749-6419(99)00059-5
63.
Bari
,
S.
, and
Hassan
,
T.
,
2001
, “
Kinematic Hardening Rules in Uncoupled Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
17
(
7
), pp.
885
905
.10.1016/S0749-6419(00)00031-0
64.
Bari
,
S.
, and
Hassan
,
T.
,
2002
, “
An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
18
(
7
), pp.
873
894
.10.1016/S0749-6419(01)00012-2
65.
Hassan
,
T.
,
Taleb
,
L.
, and
Krishna
,
S.
,
2008
, “
Influence of Non-Proportional Loading on Ratcheting Responses and Simulations by Two Recent Cyclic Plasticity Models
,”
Int. J. Plast.
,
24
(
10
), pp.
1863
1889
.10.1016/j.ijplas.2008.04.008
66.
Rahman
,
S. M.
,
Hassan
,
T.
, and
Corona
,
E.
,
2008
, “
Evaluation of Cyclic Plasticity Models in Ratcheting Simulation of Straight Pipes Under Cyclic Bending and Steady Internal Pressure
,”
Int. J. Plast.
,
24
(
10
), pp.
1756
1791
.10.1016/j.ijplas.2008.02.010
67.
Krishna
,
S.
,
Hassan
,
T.
,
Naceur
,
I. B.
,
Sai
,
K.
, and
Cailletaud
,
G.
,
2009
, “
Macro Versus Micro Scale Cyclic Plasticity Models in Simulating Nonproportional Cyclic and Ratcheting Responses of Stainless Steel 304
,”
Int. J. Plast.
,
25
(
10
), pp.
1910
1949
.10.1016/j.ijplas.2008.12.009
68.
Cheng
,
P. Y.
, and
Hassan
,
T.
,
2009
, “
Residual Stresses and Strain Ratcheting Responses of Welded Piping Joints
Under Low-Cycle Fatigue Loading,”
ASME
PVP Paper No. 2009-77813. 10.1115/PVP2009-77813
69.
Fenton
,
M.
, and
Hassan
,
T.
,
2014
, “
Low-Cycle Fatigue Failure Responses of Short and Long Radius Elbows
,”
ASME
PVP Paper No. 2014-28805. 10.1115/1.4029068
70.
Hassan
,
T.
, and
Rahman
,
M.
, “
Constitutive Models in Simulating Low-Cycle Fatigue and Ratcheting Responses of Elbow Piping Component
,”
ASME J. Pressure Vessel Technol.
(submitted).10.1115/1.4029069
You do not currently have access to this content.