Several well-known equations for estimating the crack length in the single-edge notched bending (SE(B)) specimens from the normalized crack mouth opening displacement (CMOD) compliance are evaluated based on two-dimensional (2D) and three-dimensional (3D) finite element analyses (FEAs). Two-dimensional FEAs are first carried out to verify the reported accuracy and applicable ranges for each equation based on the plane strain models with six different crack lengths. Three-dimensional FEAs are then carried out to estimate the errors of prediction of equations that evaluate the crack length from the plane stress- and plane strain-based CMOD compliances. Both plane-sided and side-grooved models are included in 3D FEAs and have seven different thickness-to-width ratios. The error of prediction of a given equation is largely impacted by the thickness-to-width ratio, the crack length, the presence of side grooves, and the use of the plane stress- or plane strain-normalized CMOD compliance. Based on the errors of prediction, the relevance of the actual state of stress in the ligament of the SE(B) specimens to the plane strain condition or the plane stress condition is inferred. Knowledge of the relevance of the plane stress condition or the plane strain condition can be used to select the corresponding CMOD compliance in crack length-CMOD equations, and, therefore, the corresponding predictive accuracy can be improved.

References

1.
Clarke
,
G. A.
,
Andrews
,
W. R.
,
Paris
,
P. C.
, and
Schmidt
,
D. W.
,
1976
, “
Single Specimen Tests for JIC Determination
,”
Mechanics of Crack Growth
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
27
42
.
2.
Clarke
,
G. A.
, and
Landes
,
J. D.
,
1979
, “
Evaluation of the J-Integral for the Compact Specimen
,”
J. Test. Eval.
,
7
(
5
), pp.
264
269
.
3.
ASTM
,
2011
, “
ASTM E1820-11: Standard Test Method for Measurement of Fracture Toughness
,” Annual Book of Standards, ASTM International, West Conshohocken, PA.
4.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2008
, “
Experimental Determination of J-R Curves Using SENB Specimens and P-CMOD Data
,”
ASME
Paper No. PVP2008-61219.
5.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks Handbook
,
Del Research Corporation
,
Hellertown, PA
.
6.
Saxena
,
A.
, and
Hudak
,
S. J.
,
1978
, “
Review and Extension of Compliance Information for Common Crack Growth Specimens
,”
Int. J. Fract.
,
14
(
5
), pp.
453
468
.
7.
Wu
,
S.
,
1984
, “
Crack Length Calculation Formula for Three Point Bend Specimens
,”
Int. J. Fract.
,
24
(
1
), pp.
33
38
.
8.
Neale
,
B. K.
,
Curry
,
D. A.
,
Green
,
G.
,
Haigh
,
J. R.
, and
Akhurst
,
K. N.
,
1984
,
A Procedure for the Determination of the Fracture Resistance of Ductile Steels
,
Central Electricity Generating Board
,
Leatherhead, Surrey, UK
.
9.
Kapp
,
J. A.
,
Leger
,
G. S.
, and
Gross
,
B.
,
1983
, “
Wide-Range Displacement Expressions for Standard Fracture Mechanics Specimens
,”
16th National Symposium on Fracture Mechanics
,
M. F.
Kanninen
, and
A. T.
Hopper
, eds., Columbus, OH, Aug. 15–17, American Society for Testing and Materials, Philadelphia, PA, pp.
27
44
.
10.
Kapp
,
J. A.
,
Leger
,
G. S.
, and
Gross
,
B.
,
1983
, “
J-R Curve Determination Using Precrack Charpy Specimens and the Load-Drop Method for Crack Growth Measurement
,”
16th National Symposium on Fracture Mechanics
,
M. F.
Kanninen
, and
A. T.
Hopper
, eds., Columbus, OH, Aug. 15–17, America Society of Testing and Material, Philadelphia, PA, pp.
281
292
.
11.
Towers
,
O. L.
, and
Garwood
,
S. J.
,
1986
, “
Influence of Crack Depth on Resistance Curves for Three-Point Bend Specimens in HY130
,”
Fracture Mechanics
, Vol.
17
,
J. H.
Underwood
,
R.
Chait
,
C. W.
Smith
,
D. P.
Wilhelm
,
W. A.
Andrews
, and
J. C.
Newman
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
454
484
.
12.
Steenkamp
,
P. A. J. M.
,
1985
, “
JR-Curve Testing of Three-Point Bend Specimens by the Unloading Compliance Method
,”
18th National Symposium on Fracture Mechanics
,
D. T.
Read
, and
R. P.
Reed
, eds., Boulder, CO, June 25–27, America Society of Testing and Materials, Philadelphia, PA, pp.
583
610
.
13.
Kapp
,
J. A.
,
1991
, “
Improved Wide Range Expressions for Displacements and Inverse Displacements for Standard Fracture Toughness Specimens
,”
J. Test. Eval.
,
19
(
1
), pp.
45
54
.
14.
Joyce
,
J. A.
,
1992
, “
J-Resistance Curve Testing of Short Crack Bend Specimens Using Unloading Compliance
,”
22nd Symposium on Fracture Mechanics
,
H. A.
Ernst
,
A.
Saxena
, and
D. L.
McDowell
, eds., American Society for Testing and Materials, Philadelphia, PA, pp.
904
924
.
15.
Joyce
,
J. J.
,
Hackett
,
E. M.
, and
Roe
,
C.
,
1993
, “
Effects of Crack Depth and Mode of Loading on the J-R Curve Behavior of a High-Strength Steel
,”
Constraint Effect in Fracture
,
E. M.
Hackett
,
K. H.
Schwalbe
, and
R. H.
Dodds
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
239
263
.
16.
Shen
,
G.
,
Tyson
,
W. R.
, and
Gianetto
,
J. A.
,
2012
, “
CMOD Compliance of B×B Single Edge Bend Specimens
,”
ASME
Paper No. PVP2012-78037.
17.
ADINA
,
2001
,
Theory and Modeling Guide
,
ADINA R&D, Inc.
,
Watertown, MA
.
18.
ABAQUS
,
2009
,
Abaqus Theory Manual
,
Dassault Systèmes
,
Providence, RI
.
You do not currently have access to this content.