The formation of strain-induced martensite (SIM) is found in metastable austenitic stainless steel (m-ASS) during cold forming, and the presence of SIM may cause reductions in toughness, ductility, and corrosion resistance of m-ASS. These mechanical properties can be restored and improved by proper heat treatment after forming, however, which obviously raises the manufacturing costs. One low-cost way to reduce the SIM amount during m-ASS forming is to maintain the forming temperature at an appropriate level. This paper intends to investigate an approach to determine the optimum forming temperature at which the strain-induced martensitic transformation (SIM-Tr) of m-ASS head during forming can be restrained within a limited intensity. First, static tensile tests were conducted on S30408 conventional cylindrical tensile specimens under different temperatures varying from 20 °C to 180 °C, and then the effect of deformation temperature on SIM was evaluated. Second, according to the stacking fault energy (SFE) calculation method, m-ASS's chemical composition was taken into further consideration to investigate its effect on SIM. Finally, a formula was established based on SIM and chemical composition for optimization of forming temperature. In addition, the results obtained by this formula were compared with those of the experiment by S30408 ASS head stamping tests, and the satisfactory matching is found for the proposed forming temperatures and predicted ferrite number (FN) values (readings of the Ferritescope measurement, as a representation of the amount of martensite in this study). Furthermore, an enhancement in the cryogenic impact properties and a fewer quantity of delta-ferrite in the microstructure of m-ASS heads are observed when warm stamping is performed as compared with the cold stamped head.

References

1.
Zheng
,
J.
,
Guo
,
A.
,
Miao
,
C.
,
Xu
,
P.
,
Yang
,
J.
,
Ye
,
J.
,
Ma
,
L.
,
Wu
,
L.
, and
Yang
,
G.
,
2011
, “
Cold Stretching of Cryogenic Pressure Vessels From Austenitic Stainless Steels
,”
ASME
Paper No. PVP2011-57331.
2.
Miao
,
C.
,
Li
,
Y.
, and
Zheng
,
J.
,
2010
, “
Effect of Strain Rate on the Deformation-Induced Martensite Transformation and Mechanical Behavior of Austenitic Stainless Steels for Cold Stretched Pressure Vessels
,”
ASME
Paper No. PVP2010-25905.
3.
Milad
,
M.
,
Zreiba
,
N.
,
Elhalouani
,
F.
, and
Baradai
,
C.
,
2008
, “
The Effect of Cold Work on Structure and Properties of AISI 304 Stainless Steel
,”
J. Mater. Process Technol.
,
203
(
1–3
), pp.
80
85
.
4.
Ma
,
L.
,
Miao
,
C.
,
Zhu
,
X.
,
Zheng
,
J.
,
Gu
,
X.
, and
Ye
,
Y.
,
2015
, “
Research on Prediction Method of Plastic Deformation for Cold Stamping Formed Standard Elliptical Head Made of Austenitic Stainless Steel
,”
J. Mech. Eng.
,
51
(
6
), pp.
19
26
(in Chinese).
5.
Li
,
Y.
,
Bu
,
F.
,
Kan
,
W.
, and
Pan
,
H.
,
2013
, “
Deformation-Induced Martensitic Transformation Behavior in Cold-Rolled AISI304 Stainless Steels
,”
Mater. Manuf. Process.
,
28
(
3
), pp.
256
259
.
6.
Xu
,
C. C.
,
Zhang
,
X. S.
, and
Hu
,
G.
,
2003
, “
Effect of Plastic Deformation on Texture and Corrosion Resistance of AISI304 Stainless Steel
,”
CIESC J.
,
54
(
6
), pp.
790
795
.http://www.hgxb.com.cn/EN/Y2003/V54/I6/790
7.
Pang
,
J. E.
, and
Guo
,
X. H.
,
2012
, “
Analysis of Cracking on Stainless Steel Head in Low Temperature and Hydrogen Service
,”
Process Equip. Piping
,
49
(
4
), pp.
64
67
(in Chinese).
8.
Du
,
H. Y.
,
Wei
,
X. L.
, and
Hu
,
X. J.
,
2011
, “
Analysis on Stress Cracking of Sub-Stabilization Austenitic Stainless Steel Elliptical Head
,”
Petro-Chem. Equip.
,
40
(
1
), pp.
103
106
(in Chinese).
9.
Shi
,
K.
, and
Jiang
,
H. Y.
,
2014
, “
The Influence of Strain-Induced Martensite on Properties of Austenitic Stainless Steel Heads
,”
China Special Equip. Safety
, 30(2), pp.
21
24
(in Chinese).http://en.cnki.com.cn/Article_en/CJFDTotal-ZGLA201402008.htm
10.
Zhai
,
J. H.
,
Bao
,
B. B.
,
Xu
,
M. X.
, and
Hu
,
Y. H.
,
2011
, “
Failure Analysis for Head Skirt in 304 Stainless Steel of Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
28
(
12
), pp.
54
58
(in Chinese).
11.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China,
2011
, “
Pressure Vessels
,” Standards Press of China, Beijing, China, Standard No. GB 150-2011.
12.
CEN National Members
,
2015
, “Unfired Pressure Vessels—Part 4: Manufacture,” Beuth Press, Berlin, Standard No. EN 13445-4:2015.
13.
The American Society of Mechanical Engineers
,
2015
, “
Boiler and Pressure Vessel Code
,” ASME, New York, Standard No. BPVC.VIII.1-2015.
14.
Jayahari
,
L.
,
Sasidhar
,
P. V.
,
Reddy
,
P. P.
,
BaluNaik
,
B.
,
Gupta
,
A. K.
, and
Singh
,
S. K.
,
2014
, “
Formability Studies of ASS 304 and Evaluation of Friction for Al in Deep Drawing Setup at Elevated Temperatures Using LS-DYNA
,”
J. King Saud Univ., Eng. Sci.
,
26
(
1
), pp.
21
31
.
15.
Bong
,
H. J.
,
Barlat
,
F.
,
Ahn
,
D. C.
,
Kim
,
H.
, and
Lee
,
M.
,
2013
, “
Formability of Austenitic and Ferritic Stainless Steels at Warm Forming Temperature
,”
Int. J. Mech. Sci.
,
75
, pp.
94
109
.
16.
Peterson
,
S. F.
,
Mataya
,
M. C.
, and
Matlock
,
D. K.
,
1997
, “
The Formability of Austenitic Stainless Steels
,”
JOM
,
49
(
9
), pp.
54
58
.
17.
Huang
,
G. L.
,
Matlock
,
D.
, and
Krauss
,
G.
,
1989
, “
Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet
,”
Metall. Trans. A
,
20
(
7
), pp.
1239
1246
.
18.
Mumtaz
,
K.
,
Takahashi
,
S.
, and
Echigoya
,
J.
,
2003
, “
Temperature Dependence of Martensitic Transformation in Austenitic Stainless Steel
,”
Korean J. Fish. Aquat. Sci.
,
22
(
6
), pp.
423
427
.
19.
Stachowicz
,
F.
,
Trzepieciński
,
T.
, and
Pieja
,
T.
,
2010
, “
Warm Forming of Stainless Steel Sheet
,”
Arch. Civ. Mech. Eng.
,
10
(
4
), pp.
85
94
.
20.
Olson
,
G. B.
, and
Cohen
,
M.
,
1975
, “
Kinetics of Strain-Induced Martensitic Nucleation
,”
Metall. Trans. A
,
6
(
4
), pp.
791
795
.
21.
Lv
,
J.
, and
Luo
,
H.
,
2014
, “
Effects of Strain and Strain-Induced α′-Martensite on Passive Films in AISI 304 Austenitic Stainless Steel
,”
Mater. Sci. Eng. C
,
34
, pp.
484
490
.
22.
Moallemi
,
M.
,
Kermanpur
,
A.
,
Najafizadeh
,
A.
,
Rezaee
,
A.
,
Baghbadorani
,
H. S.
, and
Nezhadfar
,
P. D.
,
2016
, “
Deformation-Induced Martensitic Transformation in a 201 Austenitic Steel: The Synergy of Stacking Fault Energy and Chemical Driving Force
,”
Mater. Sci. Eng. A
,
653
, pp.
147
152
.
23.
Samek
,
L.
,
De
,
M. E.
,
Penning
,
J.
, and
De
,
C. B. C.
,
2006
, “
Influence of Alloying Elements on the Kinetics of Strain-Induced Martensitic Nucleation in Low-Alloy, Multiphase High-Strength Steels
,”
Metall. Mater. Trans. A
,
37
, pp.
109
124
.
24.
Zhu
,
X.
,
Miao
,
C.
, and
Ma
,
L.
,
2013
, “
A Method for Prediction of Forming Strain for Cold Stamping Formed Head Made of S30408 Austenitic Stainless Steel
,”
ASME
Paper No. PVP2013-97768.
25.
Talonen
,
J.
, and
Hanninen
,
H.
,
2007
, “
Formation of Shear Bands and Strain-Induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels
,”
Acta Mater.
,
55
(
18
), pp.
6108
6118
.
26.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic Of China, Standardization Administration of the People's Republic Of China,
2009
, “
Stainless Steel Plate, Sheet and Strip for Pressure Equipment
,” Standards Press of China, Beijing, China, Standard No. GB 24511-2009.
27.
CEN National Members
,
2008
, “
Flat Products Made of Steels for Pressure Purposes—Part 7: Stainless Steels
,” Beuth Press, Berlin, Standard No. EN 10028-7:2008-02.
28.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic Of China, Standardization Administration of the People's Republic Of China,
2006
, “
Metallic Materials Tensile Testing at Elevated Temperature
,” Standards Press of China, Beijing, China, Standard No. GB/T 4338-2006.
29.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic Of China, Standardization Administration of the People's Republic Of China,
2010
, “
Metallic Materials Tensile Testing—Part 1: Method of Test at Room Temperature
,” Standards Press of China, Beijing, China, Standard No. GB/T 228.1:2010.
30.
Meszaros
,
I.
, and
Prohaszka
,
J.
,
2005
, “
Magnetic Investigation of the Effect of α′-Martensite on the Properties of Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
161
, pp.
162
168
.
31.
Shin
,
H. C.
,
Ha
,
T. K.
, and
Chang
,
Y. W.
,
2001
, “
Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel
,”
Scr. Mater.
,
45
(
7
), pp.
823
829
.
32.
Huang
,
J.
,
Ye
,
X.
, and
Xu
,
Z.
,
2012
, “
Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301 LN Metastable Austenitic Stainless Steels
,”
J. Iron Steel Res. Int.
,
19
(
10
), pp.
59
63
.
33.
Shrinivas
,
V.
,
Varma
,
S. K.
, and
Murr
,
L. E.
,
1995
, “
Deformation-Induced Martensitic Characteristics in 304 and 316 Stainless Steels During Room-Temperature Rolling
,”
Metall. Mater. Trans. A
,
26
(
3
), pp.
661
671
.
34.
Murr
,
L. E.
,
Staudhammer
,
K. P.
, and
Hecker
,
S. S.
,
1982
, “
Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel—Part II: Microstructural Study
,”
Metall. Trans. A
,
13
(
4
), pp.
627
635
.
35.
Guntner
,
C. J.
, and
Reed
,
R. P.
,
1962
, “
The Effect of Experimental Variables Including the Martensitic Transformation on the Low Temperature Mechanical Properties of Austenitic Stainless Steels
,”
Trans. ASM
,
55
(
3
), pp.
399
419
.
36.
Schramm
,
R. E.
, and
Reed
,
R. P.
,
1975
, “
Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels
,”
Metall. Trans. A
,
6
(
7
), pp.
1345
1351
.
37.
Talonen
,
J.
,
Aspegren
,
P.
, and
Hänninen
,
H.
,
2004
, “
Comparison of Different Methods for Measuring Strain Induced α-Martensite Content in Austenitic Steels
,”
Mater. Sci. Techno.
,
20
(
12
), pp.
1506
1512
.
38.
Luo
,
K. Y.
,
Yao
,
H. X.
,
Dai
,
F. Z.
, and
Lu
,
J. Z.
,
2014
, “
Surface Textural Features and Its Formation Process of AISI 304 Stainless Steel Subjected to Massive LSP Impacts
,”
Opt. Laser Eng.
,
55
, pp.
136
142
.
39.
Xu
,
Y.
,
Zhang
,
S. H.
,
Cheng
,
M.
,
Song
,
H. W.
, and
Wang
,
S. C.
,
2013
, “
Effect of Loading Modes on Mechanical Property and Strain Induced Martensite Transformation of Austenitic Stainless Steel
,”
Acta Metall. Sin.
,
49
(
7
), pp.
775
782
.
40.
Miao
,
C. J.
,
2012
, “
Fatigue Testing Machine for Cryogenic Environment and Fatigue Properties of Cold Stretched Austenitic Stainless Steel
,” Ph.D. thesis, Zhejiang University, Hangzhou, China.
41.
Yang
,
F.
, and
Huang
,
J. L.
,
2012
, “
Study on Strain Induced Martensite in 304 Austenitic Stainless Steel
,”
Trans. Mater. Heat Treat.
,
33
(
3
), pp.
104
109
(in Chinese).
42.
Yang
,
J. G.
,
Chen
,
S. J.
,
Huang
,
L.
,
Fang
,
K.
,
Yuan
,
S. J.
, and
Liu
,
G.
,
2012
, “
Factors Affecting Deformation Induced Martensitic Transformation of SUS304 Stainless Steel
,”
Trans. China Weld. Inst.
,
33
(
12
), pp.
89
92
(in Chinese).
43.
Zhang
,
G. Y.
, and
Wu
,
Q. F.
,
2012
, “
Influence of Solution Treatment Temperature on Sensitization of 304 Austenitic Stainless Steel
,”
Corros. Prot.
, 33(8), pp.
695
698
(in Chinese).
44.
Zhou
,
C. L.
,
Liu
,
H. M.
,
Bai
,
J. G.
,
Nie
,
Z. S.
,
Zhou
,
H. F.
, and
Qiao
,
J. W.
,
2012
, “
Effects of the Cold-Rolled Reduction on the Mechanical Properties of 304 Austenitic Stainless Steel Sheets
,”
Iron Steel
,
47
(
10
), pp.
70
75
(in Chinese).http://en.cnki.com.cn/Article_en/CJFDTotal-GANT201210013.htm
45.
Jin
,
G. X.
, and
Piao
,
M. S.
,
2011
, “
Failure Analysis of Stress Corrosion Cracking of 304 Stainless Steel Head
,”
Cast. Forg. Weld.
,
40
(
23
), pp.
226
228
(in Chinese).
46.
Zheng
,
J. Y.
,
Li
,
Y. X.
,
Xu
,
P.
,
Ma
,
L.
, and
Miao
,
C. J.
,
2011
, “
Influence Factors of Mechanical Property for Strain Strengthening Austenitic Stainless Steel
,”
J. PLA Univ. Sci. Technol. (Nat. Sci. Ed.)
,
12
(
5
), pp.
512
519
(in Chinese).
47.
De
,
A. K.
,
Speer
,
J. G.
,
Matlock
,
D. K.
,
Murdock
,
D. C.
,
Mataya
,
M. C.
, and
Comstock
,
R. J.
, Jr.
,
2006
, “
Deformation-Induced Phase Transformation and Strain Hardening in Type 304 Austenitic Stainless Steel
,”
Metall. Mater. Trans. A
,
37
(
6
), pp.
1875
1886
.
48.
Yang
,
Z.
,
2003
, “
Research on Cracking Mechanism of the Austenitic Stainless Steel Heads of the Coolers in an Oxygen Compressor System
,” Post-Doc thesis, Shanghai Jiaotong University, Shanghai, China.
49.
Belyakov
,
A.
,
Sakai
,
T.
, and
Miura
,
H.
,
2001
, “
Microstructure and Deformation Behaviour of Submicrocrystalline 304 Stainless Steel Produced by Severe Plastic Deformation
,”
Mater. Sci. Eng. A
,
319
, pp.
867
871
.
50.
Tavares
,
S. S. M.
,
Fruchart
,
D.
, and
Miraglia
,
S.
,
2000
, “
A Magnetic Study of the Reversion of Martensite α′ in a 304 Stainless Steel
,”
J. Alloy Compd.
,
307
(
1–2
), pp.
311
317
.
51.
Belyakov
,
A.
,
Miura
,
H.
, and
Sakai
,
T.
,
1998
, “
Dynamic Recrystallization Under Warm Deformation of a 304 Type Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
255
(
1–2
), pp.
139
147
.
52.
Chang
,
J. S.
, and
Chou
,
S. S.
,
1995
, “
Deformation Microstructures and the Shear Strain Rate of Type 304 Stainless Steel Sheet in Cylindrical Deep Drawing of Warm Working
,”
J. Mater Sci.
,
30
(
10
), pp.
2706
2715
.
53.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic Of China, Standardization Administration of the People's Republic Of China,
2007
, “
Metallic Materials—Charpy Pendulum Impact Test Method
,” Standards Press of China, Beijing, China, Standard No. GB/T 229-2007.
54.
Garfias-Garcia
,
E.
,
Colin-Paniagua
,
F. A.
,
Herrera-HernáNdez
,
H.
,
Juarez-Garcia
,
J. M.
,
Palomar-Pardave
,
M. E.
, and
Romero-Romo
,
M. R.
,
2010
, “
Electrochemical and Microscopy Study of Localized Corrosion on a Sensitized Stainless Steel AISI 304
,”
ECS Trans.
,
29
(
1
), pp.
93
102
.http://ecst.ecsdl.org/content/29/1/93.abstract
You do not currently have access to this content.