Recently, a heat treatment technique has been proposed to induce compressive residual stresses at the vicinity of the outer wall of a thermally autofrettaged cylinder. In the proposed technique, the outer wall of a thermally autofrettaged vessel is heated above the lower critical temperature while temperature of the inner wall is kept below it. The cylinder is then quenched, which induces compressive residual stresses both at the inner and outer walls. This article presents the construction and working of an experimental setup to carry out the proposed heat treatment coupled thermal autofrettage process. Experiments are carried out on AH36 mild steel cylinders to assess the presence of the compressive residual stresses. Measurement of microhardness and opening angle of cut in a thermally autofrettaged AH36 steel cylinder provided the evidence for compressive residual stresses at the outer wall of the cylinder. A finite element method (FEM) technique was used to predict the opening angle of cut. Predicted opening angle was fairly close to experimental observation.

References

1.
Jacob
,
L.
,
1907
, “
La Résistance et L'équilibre Élastique Des Tubes Frettés
,”
Meml. Artillerie Nav.
,
1
(
5
), pp.
43
155
.
2.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.
3.
Mote
,
J. D.
,
Ching
,
L. K. W.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
,
Explosive Autofrettage of Cannon Barrels
, Army Materials and Research Center, Watertown, MA, Report No. AMMRC CR 70-25.
4.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.
5.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.
6.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.
7.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.
8.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal.
,
51
(
2
), pp.
144
160
.
9.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2017
, “
A Finite Element Method Study of Combined Hydraulic and Thermal Autofrettage Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041204
.
10.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Study on Enhancing the Performance of Thermally Autofrettaged Cylinder Through Shrink-Fitting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094501
.
11.
Parker
,
A. P.
,
1981
, “
Stress Intensity and Fatigue Crack Growth in Multiply-Cracked, Pressurized, Partially Autofrettaged Thick Cylinders
,”
Fatigue Fract. Eng. Mater. Struct.
,
4
(
4
), pp.
321
330
.
12.
Seifi
,
R.
, and
Babalhavaeji
,
M.
,
2012
, “
Bursting Pressure of Autofrettaged Cylinders With Inclined External Cracks
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
112
119
.
13.
Franklin
,
G. J.
, and
Morrison
,
J. L. M.
,
1960
, “
Autofrettage of Cylinders: Prediction of Pressure/External Expansion Curves and Calculation of Residual Stresses
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
947
974
.
14.
Sedighi
,
M.
, and
Jabbari
,
A. H.
,
2013
, “
Investigation of Residual Stresses in Thick-Walled Vessels With Combination of Autofrettage and Wire-Winding
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
295
301
.
15.
Koh
,
S. K.
, and
Stephens
,
R. I.
,
1991
, “
Stress Analysis of an Autofrettaged Thick-Walled Pressure Vessel Containing an External Groove
,”
Int. J. Pressure Vessels Piping
,
46
(
1
), pp.
95
111
.
16.
Hashmi
,
S.
,
2016
,
Comprehensive Materials Finishing
,
Elsevier
,
Waltham, MA
.
17.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
An Analysis of Thermal Autofrettage Process With Heat Treatment
,”
Int. J. Mech. Sci.
,
144
, pp.
134
145
.
18.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2009
,
Materials Science and Engineering: An Introduction
,
Wiley
,
Hoboken, NJ
.
19.
Zhang
,
L.
,
Reutzel
,
E. W.
, and
Michaleris
,
P.
,
2004
, “
Finite Element Modeling Discretization Requirements for the Laser Forming Process
,”
Int. J. Mech. Sci.
,
46
(
4
), pp.
623
637
.
20.
Wang
,
K. F.
,
Chandrasekar
,
S.
, and
Yang
,
H. T. Y.
,
1997
, “
Experimental and Computational Study of the Quenching of Carbon Steel
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
257
265
.
21.
Faupel
,
J. H.
,
1955
, “
Residual Stresses in Heavy-Wall Cylinders
,”
J. Franklin Inst.
,
259
(
5
), pp.
405
419
.
22.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
23.
Gür
,
C. H.
, and
Tekkaya
,
A. E.
,
2001
, “
Numerical Investigation of Non-Homogeneous Plastic Deformation in Quenching Process
,”
Mater. Sci. Eng., A
,
319–321
, pp.
164
169
.
24.
Geekcreit, “
Geekcreit® 1000W 20A ZVS Induction Heating Machine Cooling Fan PCB Copper Tube 12-36V
,” accessed Mar. 12, 2019, https://www.banggood.in/1000W-20A-ZVS-Induction-Heating-Machine-Cooling-Fan-PCB-Copper-Tube-12-36V-p-1089662.html
25.
Dwight
,
H. B.
,
1918
, “
Skin Effect in Tubular and Flat Conductors
,”
Trans. Am. Inst. Electr. Eng.
,
37
(
2
), pp.
1379
1403
.
26.
MAX6675, “
MAX6675 Cold-Junction-Compensated K-Thermocouple-to-Digital Converter (0 °C to +1024 °C)-Maxim
,” accessed Feb. 16, 2019, https://www.maximintegrated.com/en/products/sensors/MAX6675.html
27.
Pharr
,
G. M.
,
Tsui
,
T. Y.
,
Bolshakov
,
A.
, and
Oliver
,
W. C.
,
1994
, “
Effects of Residual Stress on the Measurement of Hardness and Elastic Modulus Using Nanoindentation
,”
MRS Online Proc. Libr.
,
338
, pp.
127
134
.
28.
Tosha
,
K.
,
2002
, “
Influence of Residual Stresses on the Hardness Number in the Affected Layer Produced by Shot Peening
,”
Second Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology
, Seoul, South Korea, July 22–24, pp.
48
54
.
29.
Parker
,
A. P.
, and
Farrow
,
J. R.
,
1980
, “
Technical Note: On the Equivalence of Axisymmetric Bending, Thermal, and Autofrettage Residual Stress Fields
,”
J. Strain Anal. Eng. Des.
,
15
(
1
), pp.
51
52
.
30.
Parker
,
A. P.
, and
Farrow
,
J. R.
,
1981
, “
Stress Intensity Factors for Multiple Radial Cracks Emanating From the Bore of an Autofrettaged or Thermally Stressed, Thick Cylinder
,”
Eng. Fract. Mech.
,
14
(
1
), pp.
237
241
.
31.
Perl
,
M.
, and
Aroné
,
R.
,
1988
, “
Stress Intensity Factors for a Radially Multicracked Partially Autofrettaged Pressurized Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
110
(
2
), pp.
147
154
.
You do not currently have access to this content.