Abstract

Corrosion assessment and burst pressure prediction of line pipes with corrosion defects are essential for the integrity assessment of steel transmission pipelines. The failure assessment methods proposed in codes or handbooks may be overly conservative or exhibit significant scatter in their predictions. In this paper, the effects of two key parameters—the flow stress and Folias bulging factor, on predicting the failure pressure of pipelines with defects are studied. The Folias bulging factor is suggested by fitting the results from finite element (FE) analysis. Then, a new prediction method for the failure pressure of pipelines with defects is proposed. The failure pressures predicted by the proposed method are in better agreement with the experimental results than the results by the other methods such as B31G, MB31G, Det Norske Veritas (DNV), and rectangular parabolic area (RPA).

References

1.
Palmer
,
A. C.
, and
King
,
R. A.
,
2004
,
Subsea Pipeline Engineering
,
PennWell Books
,
Tulsa, OK
.
2.
Zhou
,
J.
,
Feng
,
X.
, and
Li
,
X.
,
2011
, “
Research on Critical Issues of Life-Cycle Service Safety for Subsea Pipelines
,”
Eng. Mech.
,
2
(
28
), pp.
97
108
. http://en.cnki.com.cn/Article_en/CJFDTotal-GCLX2011S2014.htm
3.
Jin
,
W.
,
Zhang
,
E.
,
Shao
,
J.
, and
Liu
,
D.
,
2004
, “
Cause Analysis and Countermeasure for Submarine Pipeline Failure
,”
Bull. Sci. Technol.
,
6
(
20
), pp.
529
533
.
4.
Stephens
,
D. R.
, and
Francini
,
R. B.
,
2000
, “
A Review and Evaluation of Remaining Strength Criteria for Corrosion Defects in Transmission Pipelines
,”
ETCE/OMAE 2000 Joint Conference
, New Orleans, LA, 2000, pp.
1
11
.
5.
Maxey
,
W. A.
,
Kiefner
,
J. F.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1972
, “
Ductile Fracture Initiation, Propagation, and Arrest in Cylindrical Vessels
,”
ASTM International
,
West Conshohocken, PA
.
6.
ASME
,
1984
, “
Manual for Determining the Remaining Strength of Corroded Pipelines
,”
ANSI/ASME
,
New York
, Paper No. B31 g-1984.
7.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1990
, “
Evaluating Pipe–Conclusion. PC Program Speeds New Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
,
88
(
34
), pp.
91
93
. https://trid.trb.org/view/312878
8.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1990
, “
Evaluating Pipe-1. New Method Corrects Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
,
88
(
32
), pp. 56–59.
9.
Fu
,
B.
, and
Batte
,
A. D.
,
1999
, “
New Methods for Assessing the Remaining Strength of Corroded Pipelines
,”
EPRG/PRCI 12th Biennial Joint Technical Meeting on Pipeline Research
, Groningen, The Netherlands, 1999, Paper 28.
10.
Stephens
,
D. R.
,
Leis
,
B. N.
,
Kurre
,
M. D.
, and
Rudland
,
D. L.
,
1999
, “
Development of an Alternative Failure Criterion for Residual Strength of Corrosion Defects in Moderate-to High-Toughness Pipe
,” Battelle Report to PRC International Report, AGA, Catalog Number L51794.
11.
Ritchie
,
D.
, and
Last
,
S.
,
1995
, “
Burst Criteria of Corroded Pipelines-Defect Acceptance Criteria
,”
EPRG/PRC Tenth Biennial Joint Technical Meeting on Line Pipe Research
, Cambridge, UK, pp.
32-1
32-11
.
12.
DNV
,
2004
, “
DNV-RP-F101 Recommend Practice Corroded Pipelines
,”
DNV
,
Oslo, Norway
.
13.
Benjamin
,
A. C.
, and
Andrade
,
E. Q. D.
,
2003
, “
Modified Method for the Assessment of the Remaining Strength of Corroded Pipelines
,”
First Rio Pipeline Conference
, Rio de Janeiro, Brazil, pp.
413
03
.
14.
Andrade
,
E. Q.
, and
Benjamin
,
A. C.
,
2004
, “
Structural Evaluation of Corrosion Defects in Pipelines: Comparison of FE Analyses and Assessment Methods
,”
14th International Offshore and Polar Engineering Conference
, Toulon, France, May 23–28, pp.
120
127
.
15.
Cosham
,
A.
,
Hopkins
,
P.
, and
Macdonald
,
K. A.
,
2007
, “
Best Practice for the Assessment of Defects in Pipelines—Corrosion
,”
Eng. Fail. Anal
,
14
(
7
), pp.
1245
1265
.10.1016/j.engfailanal.2006.11.035
16.
Hahn
,
G. T.
,
Sarrate
,
M.
, and
Rosenfield
,
A. R.
,
1969
, “
Criteria for Crack Extension in Cylindrical Pressure Vessels
,”
Int. J. Fract. Mech.
,
5
(
3
), pp.
187
210
.10.1007/BF00184612
17.
Denys
,
R. M.
,
1995
, “
Fitness-for-Purpose Assessment of Corrosion Defects
,”
The Pipeline Pigging Conference
, Amsterdam, The Netherlands, June pp.
5
7
.
18.
Folias
,
E. C.
,
1964
, “
The Stresses in a Cylindrical Shell Containing an Axial Crack
,” Firestone Flight Sciences Lab, California Institute of Technology, Pasadena, CA, Report No. 1964-01-01.
19.
Folias
,
E. S.
,
1965
, “
An Axial Crack in a Pressurized Cylindrical Shell
,”
Int. J. Fract. Mech.
,
1
(
1
), pp.
20
113
.10.1007/BF00184151
20.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
Diniz
,
J. L.
, and
de Andrade
,
E. Q.
,
2005
, “
Burst Tests on Pipeline Containing Interacting Corrosion Defects
,”
24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2005)
, June 12–17, pp.
403
417
. 10.1115/OMAE2005-67059
21.
BjØrnØy
,
O. H.
, and
Marley
,
M. J.
,
2001
, “
Assessment of Corroded Pipelines: Past, Present and Future
,”
11th International Conference on Offshore and Polar Engineering
, Stavanger, IL, June 17–22, pp.
93
101
.
22.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part I: Current Status
,”
Seventh International Offshore and Polar Engineering Conference
, Honolulu, HI, May 25–30, pp.
624
634
.
23.
Leis
,
B. N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part II: Alternative Criterion
,”
Seventh International Offshore and Polar Engineering Conference
, Honolulu, HI, May 25–30, pp.
635
641
.
24.
Zhu
,
X.
, and
Leis
,
B. N.
,
2004
, “
Strength Criteria and Analytic Predictions of Failure Pressure in Line Pipes
,”
Int. J. Offshore Polar
,
14
(
2
), pp.
125
131
.
25.
Stewart
,
G.
,
Klever
,
F. J.
, and
Ritchie
,
D.
,
1994
, “
An Analytical Model to Predict the Burst Capacity of Pipelines
,”
American Society of Mechanical Engineers
,
New York
.
26.
Chiodo
,
M. S.
, and
Ruggieri
,
C.
,
2009
, “
Failure Assessments of Corroded Pipelines With Axial Defects Using Stress-Based Criteria: Numerical Studies and Verification Analyses
,”
Int. J. Pressure Vessels Piping
,
86
(
2–3
), pp.
164
176
.10.1016/j.ijpvp.2008.11.011
27.
Zhu
,
X.
, and
Leis
,
B. N.
,
2007
, “
Theoretical and Numerical Predictions of Burst Pressure of Pipelines
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
644
652
.10.1115/1.2767352
28.
Veritas
,
D. N.
,
2013
, “
DNV-RP-C208: Determination of Structural Capacity by Non-Linear FE Analysis Methods
,”
Det Norske Veritas
,
Høvik, Norway
.
29.
API
,
2004
, “
5 L, Specification for Line Pipe
,”
API
,
Washington, DC
.
30.
Maxey
,
W. A.
,
Kiefner
,
J. F.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1973
, “
Experimental Investigation of Ductile Fractures in Piping
,”
Proceedings of the 12th World CAS Conference,
Nice, France, Paper No. IGU/C 34-73.
31.
API
,
2007
, “
579-1/ASME FFS-1: Fitness-for-Service
,”
The American Petroleum Institute
,
Washington
, DC.
32.
BSI
,
1999
, “
Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures
,”
BSI
,
London
, Standard No. BS 7910.
33.
Stewart
,
G.
,
Klever
,
F. J.
, and
Ritchie
,
D.
,
1994
, “
An Analytical Model to Predict the Burst Capacity of Pipelines
,”
13th International Offshore Mechanics and Arctic Engineering Conference
, Houston, TX, Feb. 27–Mar. 3, pp.
177
188
.
34.
Zhu
,
X.
, and
Leis
,
B. N.
,
2006
, “
Average Shear Stress Yield Criterion and Its Application to Plastic Collapse Analysis of Pipelines
,”
Int. J. Pressure Vessels Piping
,
83
(
9
), pp.
663
671
.10.1016/j.ijpvp.2006.06.001
35.
Batte
,
D.
,
Fu
,
B.
,
Kirkwood
,
M. G.
, and
Vu
,
D.
,
1997
, “
Advanced Methods for Integrity Assessment of Corroded Pipelines
,”
Pipes Pipelines Int.
,
42
(
1
), pp.
5
11
.
36.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
, and
de Andrade
,
E. Q.
,
2006
, “
Burst Tests on Pipeline Containing Closely Spaced Corrosion Defects
,”
25th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2006)
, Hamburg, Germany, June 4–9, pp.
103
116
. 10.1115/OMAE2006-92131
37.
de Souza
,
R. D.
,
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
, and
Diniz
,
J. L.
,
2004
, “
Burst Tests on Pipeline Containing Long Real Corrosion Defects
,”
Fifth International Pipeline Conference
, Calgary, AB, Canada, Oct. 4–8, pp.
1159
1167
. 10.1115/IPC2004-0128
38.
Cronin
,
D. S.
, and
Pick
,
R. J.
,
2000
, “
Experimental Database for Corroded Pipe: Evaluation of RSTRENG and B31G
,”
International Pipeline Conference
, Calgary, AB, Canada, Oct. 1–5, pp.
757
767
. 10.1115/IPC2000-190
39.
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
Castro
,
J. T. P.
, and
Benjamin
,
A. C.
,
2006
, “
Part 3: Burst Tests of Pipeline With Extensive Longitudinal Metal Loss
,”
Exp. Tech.
,
30
(
6
), pp.
60
65
.10.1111/j.1747-1567.2006.00109.x
40.
Chauhan
,
V.
, and
Crossley
,
J.
,
2009
, “
Corrosion Assessment Guidance for High Strength Steels (Phase 1)
,”
GL Industrial Services UK Ltd
., Report Number: R9017.
41.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
, and
Vieira
,
R. D.
,
2007
, “
Part 6: Analysis of Pipeline Containing Interacting Corrosion Defects
,”
Exp. Tech.
,
31
(
3
), pp.
74
82
.10.1111/j.1747-1567.2007.00190.x
42.
Cronin
,
D. S.
,
Roberts
,
K. A.
, and
Pick
,
R. J.
,
1996
, “
Assessment of Long Corrosion Grooves in Line Pipe
,”
First International Pipeline Conference
, Calgary, AB, Canada, pp.
401
408
.
43.
Kim
,
W.
,
Kim
,
Y.
,
Kho
,
Y.
, and
Choi
,
J.
,
2002
, “
Full Scale Burst Test and Finite Element Analysis on Corroded Gas Pipeline
,”
Fourth International Pipeline Conference
, Calgary, AB, Canada, Sept. 29–Oct. 3, pp.
1501
1508
. 10.1115/IPC2002-27037
44.
Bjørnøy
,
O. H.
,
Sigurdsson
,
G.
, and
Cramer
,
E.
,
2000
, “
Residual Strength of Corroded Pipelines, DNV Test Results
,”
Tenth International Offshore and Polar Engineering Conference
, Seattle, WA, May 28–June 2, pp.
189
196
.
You do not currently have access to this content.