Abstract

This paper investigates the damage localization in a pressure vessel using guided wave-based structural health monitoring (SHM) technology. An online SHM system was developed to automatically select the guided wave propagating path and collect the generated signals during the monitoring process. Deep learning approach was employed to train the convolutional neural network (CNN) model by the guided wave datasets. Two piezo-electric ceramic transducers (PZT) arrays were designed to verify the anti-interference ability and robustness of the CNN model. Results indicate that the CNN model with seven convolution layers, three pooling layers, one fully connected layer, and one Softmax layer could locate the damage with 100% accuracy rate without overfitting. This method has good anti-interference ability in vibration or PZTs failure condition, and the anti-interference ability increases with increasing of PZT numbers. The trained CNN model can locate damage with high accuracy, and it has great potential to be applied in damage localization of pressure vessels.

References

1.
Nejad
,
M. Z.
,
Jabbari
,
M.
, and
Ghannad
,
M.
,
2015
, “
Elastic Analysis of FGM Rotating Thick Truncated Conical Shells With Axially-Varying Properties Under Non-Uniform Pressure Loading
,”
Compos. Struct.
,
122
, pp.
561
569
.10.1016/j.compstruct.2014.12.028
2.
Li
,
F.
,
Liu
,
Z.
,
Sun
,
X.
,
Li
,
H.
, and
Meng
,
G.
,
2015
, “
Propagation of Guided Waves in Pressure Vessel
,”
Wave Motion
,
52
, pp.
216
228
.10.1016/j.wavemoti.2014.10.005
3.
Perl
,
M.
,
Steiner
,
M.
, and
Perry
,
J.
,
2014
, “
3-D Stress Intensity Factors Due to Autofrettage for an Inner Radial Lunular or Crescentic Crack in a Spherical Pressure Vessel
,”
Eng. Fract. Mech.
,
131
, pp.
282
295
.10.1016/j.engfracmech.2014.08.003
4.
Seifert
,
H. P.
, and
Ritter
,
S.
,
2008
, “
Stress Corrosion Cracking of Low-Alloy Reactor Pressure Vessel Steels Under Boiling Water Reactor Conditions
,”
J. Nucl. Mater.
,
372
(
1
), pp.
114
131
.10.1016/j.jnucmat.2007.03.048
5.
Ishimoto
,
J.
,
Sato
,
T.
, and
Combescure
,
A.
,
2017
, “
Computational Approach for Hydrogen Leakage With Crack Propagation of Pressure Vessel Wall Using Coupled Particle and Euler Method
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10656
10682
.10.1016/j.ijhydene.2017.01.161
6.
Mitkevich
,
A. B.
,
2006
, “
Deformations of Pressure Vessel Domes in Asymmetric Winding
,”
Mech. Compos. Mater.
,
42
(
4
), pp.
297
302
.10.1007/s11029-006-0039-y
7.
Milne
,
I.
, and
Knee
,
N.
,
1986
, “
An EGF Exercise in Predicting Ductile Instability: Phase 2, Cracked Pressure Vessel
,”
Fatigue Fract. Eng. Mater. Struct.
,
9
(
4
), pp.
231
257
.10.1111/j.1460-2695.1986.tb00451.x
8.
Ennaceur
,
C.
,
Laksimi
,
A.
,
Hervé
,
C.
, and
Cherfaoui
,
M.
,
2006
, “
Monitoring Crack Growth in Pressure Vessel Steels by the Acoustic Emission Technique and the Method of Potential Difference
,”
Int. J. Pressure Vessels Piping
,
83
(
3
), pp.
197
204
.10.1016/j.ijpvp.2005.12.004
9.
Wilson, C. L
.,
Lonkar, K.
,
Roy, S.
, Kopsaftopoulos, F., and Chang, F. K.,
2018
, “
Structural Health Monitoring of Composites
,”
Compr. Compos. Mater. II
, 7, pp.
382
407
.10.1016/b978-0-12-803581-8.10039-6
10.
Gou
,
R.
,
Zhang
,
Y.
,
Xu
,
X.
,
Sun
,
L.
, and
Yang
,
Y.
,
2011
, “
Residual Stress Measurement of New and In-Service X70 Pipelines by X-ray Diffraction Method
,”
NDTE Int.
,
44
(
5
), pp.
387
393
.10.1016/j.ndteint.2011.03.003
11.
Gomera
,
V.
, and
Rastegaev
,
I.
,
2015
, “
The Possibility of the Early Identification of Delamination in the Walls of Pressure Vessels by the Ultrasonic and Acoustic Emission Inspection
,”
J. Russ. Soc. Non-Destr Test. Tech. Diagn.
,
6
, pp.
82
89
.10.14489/td.2015.01.pp.082-089
12.
Takamura
,
T.
,
Ko
,
P. J.
,
Sharma
,
J.
,
Yukino
,
R.
,
Ishizawa
,
S.
, and
Sandhu
,
A.
,
2015
, “
Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications
,”
Sensors
,
15
(
6
), pp.
12983
12998
.10.3390/s150612983
13.
Delenkovsky
,
N.
, and
Gnusin
,
A.
,
2017
, “
Estimating the Depth of Surface Flaws by Penetrant Testing
,”
Russ. J. Nondestr. Test.
,
53
(
3
), pp.
231
235
.10.1134/S1061830917030044
14.
García-Martín
,
J.
,
Gómez-Gil
,
J.
, and
Vázquez-Sánchez
,
E.
,
2011
, “
Non-Destructive Techniques Based on Eddy Current Testing
,”
Sensors
,
11
(
3
), pp.
2525
2565
.10.3390/s110302525
15.
Mustapha
,
S.
, and
Ye
,
L.
,
2014
, “
Leaky and Non-Leaky Behaviours of Guided Waves in CF/EP Sandwich Structures
,”
Wave Motion
,
51
(
6
), pp.
905
918
.10.1016/j.wavemoti.2014.03.004
16.
Horace
,
L.
,
1917
, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. A
,
93
(
648
), pp.
114
128
.10.1098/rspa.1917.0008
17.
Worlton
,
D. C.
,
1961
, “
Experimental Confirmation of Lamb Waves at Megacycle Frequencies
,”
J. Appl. Phys.
,
32
, pp.
967
971
.10.1063/1.1736196
18.
Quiroga
,
J.
,
Mujica
,
L.
,
Villamizar
,
R.
,
Ruiz
,
M.
, and
Camacho
,
J.
,
2017
, “
PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves
,”
Sensors
,
17
(
12
), pp.
2788
2716
.10.3390/s17122788
19.
Giurgiutiu
,
V.
,
2008
,
Structural Health Monitoring: With Piezoelectric Wafer Active Sensors
,
Academic Press
,
Cambridge, MA
, pp.
699
710
.
20.
Hall
,
J. S.
,
Fromme
,
P.
, and
Michaels
,
J. E.
,
2014
, “
Guided Wave Damage Characterization Via Minimum Variance Imaging With a Distributed Array of Ultrasonic Sensors
,”
J. Nondestr. Eval.
,
33
(
3
), pp.
299
308
.10.1007/s10921-013-0212-x
21.
Leckey
,
C. A.
,
Rogge
,
M. D.
, and
Parker
,
F. R.
,
2014
, “
Guided Waves in Anisotropic and Quasi-Isotropic Aerospace Composites: Three-Dimensional Simulation and Experiment
,”
Ultrasonics
,
54
(
1
), pp.
385
394
.10.1016/j.ultras.2013.05.007
22.
Zhang
,
X.
,
Tang
,
Z.
,
,
F.
, and
Pan
,
X.
,
2016
, “
Excitation of Dominant Flexural Guided Waves in Elastic Hollow Cylinders Using Time Delay Circular Array Transducers
,”
Wave Motion
,
62
, pp.
41
54
.10.1016/j.wavemoti.2015.09.010
23.
De Luca
,
A.
,
Perfetto
,
D.
,
De Fenza
,
A.
,
Petrone
,
G.
, and
Caputo
,
F.
,
2019
, “
Guided Waves in a Composite Winglet Structure: Numerical and Experimental Investigations
,”
Compos. Struct.
,
210
, pp.
96
108
.10.1016/j.compstruct.2018.11.048
24.
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1992
, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
3
), pp.
381
397
.10.1109/58.143172
25.
Tse
,
P. W.
, and
Wang
,
X. J.
,
2009
, “
Semi-Quantitative Analysis of Defect in Pipelines Through the Use of Technique of Ultrasonic Guided Waves
,”
Key Eng. Mater.
,
413–414
, pp.
109
116
.10.4028/www.scientific.net/KEM.413-414.109
26.
Ong
,
W. H.
, and
Chiu
,
W. K.
,
2013
, “
Numerical Modelling of Scattered Lamb Waves Through Varied Damage Size in Challenging Geometry
,”
Struct. Health Monit.
,
12
(
3
), pp.
278
295
.10.1177/1475921713482513
27.
Engholm
,
M.
, and
Stepinski
,
T.
,
2011
, “
Direction of Arrival Estimation of Lamb Waves Using Circular Arrays
,”
Struct. Health Monit.
,
10
(
5
), pp.
467
480
.10.1177/1475921710379512
28.
Liu
,
S.
,
Wu
,
Z.
,
Tang
,
L.
, and
Xu
,
X.
,
2012
, “
Data Transfer Using the Low Frequency Longitudinal Guided Wave in a Liquid-Filled Pipe
,”
Appl. Acoust.
,
73
(
2
), pp.
158
163
.10.1016/j.apacoust.2011.07.011
29.
Lee
,
J.
,
Park
,
J.
, and
Cho
,
Y.
,
2016
, “
A Novel Ultrasonic NDE for Shrink Fit Welded Structures Using Interface Waves
,”
Ultrasonics
,
68
, pp.
1
7
.10.1016/j.ultras.2016.01.009
30.
Parodi
,
M.
,
Fiaschi
,
C.
,
Memmolo
,
V.
,
Ricci
,
F.
, and
Maio
,
L.
,
2019
, “
Interaction of Guided Waves With Delamination in a Bilayered Aluminum-Composite Pressure Vessel
,”
J. Mater. Eng. Perform.
,
28
(
6
), pp.
3281
3291
.10.1007/s11665-019-04105-z
31.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.10.1038/323533a0
32.
Hsu
,
K-L.
,
Gupta
,
H. V.
, and
Sorooshian
,
S.
,
1995
, “
Artificial Neural Network Modeling of the Rainfall-Runoff Process
,”
Water Resour. Res.
,
31
(
10
), pp.
2517
2530
.10.1029/95WR01955
33.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.10.1126/science.1127647
34.
Li
,
H.
,
Lin
,
Z.
,
Shen
,
X.
,
Brandt
,
J.
, and
Hua
,
G.
,
2015
, “
A Convolutional Neural Network Cascade for Face Detection
,”
IEEE Conference on Computer Vision and Pattern Recognition
, Boston, MA, June 7–12, pp.
5325
5334
.10.1109/CVPR.2015.7299170
35.
Hu
,
B.
,
Lu
,
Z.
,
Li
,
H.
, and
Chen
,
Q.
,
2015
, “
Convolutional Neural Network Architectures for Matching Natural Language Sentences
,”
Neural Inf. Process. Syst.
,
2
, pp.
2042
2050
. https://arxiv.org/abs/1503.03244
36.
Jia
,
F.
,
Lei
,
Y.
,
Lin
,
J.
,
Zhou
,
X.
, and
Lu
,
N.
,
2016
, “
Deep Neural Networks: A Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of Rotating Machinery With Massive Data
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
303
315
.10.1016/j.ymssp.2015.10.025
37.
Mathew
,
J.
,
Parfitt
,
D.
,
Wilford
,
K.
,
Riddle
,
N.
,
Alamaniotis
,
M.
,
Chroneos
,
A.
, and
Fitzpatrick
,
M. E.
,
2018
, “
Reactor Pressure Vessel Embrittlement: Insights From Neural Network Modelling
,”
J. Nucl. Mater.
,
502
, pp.
311
322
.10.1016/j.jnucmat.2018.02.027
38.
Hill
,
E. V. K.
,
Iizuka
,
J.
,
Kaba
,
I. K.
,
Surber
,
H. L.
, and
Poon
,
Y. P.
,
2012
, “
Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels Using Mathematically Modeled Acoustic Emission Failure Mechanism Data
,”
Res. Nondestr. Eval.
,
23
(
2
), pp.
89
103
.10.1080/09349847.2011.637164
39.
Bouvrie
,
J.
,
2006
, “
Notes on Convolutional Neural Networks
,” MIT CBCL,
Cambridge, MA
.
40.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Network
,”
Commun. ACM
,
60
(6), pp. 84–90.10.1145/3065386
41.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
International Conference on Learning Representations 2015
, San Diego, CA, May 7–9, pp. 1409–1556. https://www.researchgate.net/publication/265385906_Very_Deep_Convolutional_Networks_for_Large-Scale_Image_Recognition
42.
MCCulloch
,
W.
, and
Pitts
,
W.
,
1990
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biol.
,
52
(
1–2
), pp.
99
115
.10.1016/S0092-8240(05)80006-0
43.
Salakhutdinov, R. R.
, and Hinton, G. E.,
2009
, “
Replicated Softmax: An Undirected Topic Model
,”
Adv. Neural Inf. Process. Syst.
,
22
, pp.
1607
1614
.http://papers.nips.cc/paper/3856-replicated-softmax-an-undirected-topic-model
44.
Fukushima
,
K.
,
1980
, “
Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
,”
Biol. Cybern.
,
36
(
4
), pp.
193
202
.10.1007/BF00344251
45.
Spratt
,
H.
,
Ju
,
H.
, and
Brasier
,
A. R.
,
2013
, “
A Structured Approach to Predictive Modeling of a Two-Class Problem Using Multidimensional Data Sets
,”
Methods
,
61
(
1
), pp.
73
85
.10.1016/j.ymeth.2013.01.002
46.
Bleich
,
J.
,
Kapelner
,
A.
,
George
,
E. I.
, and
Jensen
,
S. T.
,
2014
, “
Variable Selection for BART: An Application to Gene Regulation
,”
Ann. Appl. Stat.
,
8
(
3
), pp.
1750
1781
.10.1214/14-AOAS755
47.
Yang
,
B.
,
Xiang
,
Y.
,
Xuan
,
F.-Z.
,
Hu
,
C.
,
Xiao
,
B.
,
Zhou
,
S.
, and
Luo
,
C.
,
2019
, “
Damage Localization in Hydrogen Storage Vessel by Guided Waves Based on a Real-Time Monitoring System
,”
Int. J. Hydrogen Energy
,
44
(
40
), pp.
22740
22751
.10.1016/j.ijhydene.2019.01.009
48.
Xu
,
B.
, and
Giurgiutiu
,
V.
,
2007
, “
Single Mode Tuning Effects on Lamb Wave Time Reversal With Piezolectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Nondestr. Eval.
,
26
(
2–4
), pp.
123
134
.10.1007/s10921-007-0027-8
49.
Xiao
,
B.
,
Yang
,
B.
,
Xuan
,
F.-Z.
,
Wan
,
Y.
,
Hu
,
C.
,
Jin
,
P.
,
Lei
,
H.
,
Xiang
,
Y.
, and
Yang
,
K.
,
2019
, “
In-Situ Monitoring of a Filament Wound Pressure Vessel by the MWCNT Sensor Under Hydraulic Fatigue Cycling and Pressurization
,”
Sensors
,
19
(
6
), p.
1396
10.3390/s19061396
50.
Hu
,
C.
,
Yang
,
B.
,
Xuan
,
F.-Z.
,
Yan
,
J.
, and
Xiang
,
Y.
,
2020
, “
Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30CrMo Steel Curved Plates
,”
Sensors
,
20
(
3
), p.
849
.10.3390/s20030849
51.
Masserey
,
B.
, and
Fromme
,
P.
,
2015
, “
In-Situ Monitoring of Fatigue Crack Growth Using High Frequency Guided Waves
,”
NDT E Int.
,
71
, pp.
1
7
.10.1016/j.ndteint.2014.12.007
You do not currently have access to this content.