Abstract

When high-velocity penetrator impacts and penetrates a liquid-filled container such as an aircraft fuel tank, the hydrodynamic ram (HRAM) event occurs. This process could be roughly divided into four phases, each of which could cause different degrees of damage to the liquid-filled container or the surrounding equipment. Spherical fragment impacting tests of different velocities were performed on two sizes of liquid-filled containers to investigate the effect of boundary constraints on cavity growth. The velocity range in the experiment was from 600 m/s to 1400 m/s. Through theoretical analysis and experimental results, it is found that the radial disturbance range of the cavity is not constant in different containers and under different impact velocities. An improved method is presented to modeling the cavity growth in the drag-cavity phases of HRAM events. The approach quantitatively describes the radial disturbance range of the cavity and is appropriate for the calculation of the cavity growth in HRAM. Moreover, the effect of liquid type on cavity growth is studied theoretically. When the fragment velocity is less than Mach 0.5, the length and radius of the cavity are mainly affected by the density of the liquid. When the fragment velocity exceeds Mach 0.5, the characteristics of cavity shape are mainly affected by the acoustic velocity in the liquid.

References

1.
Ball
,
R. E.
,
2003
,
The Fundamentals of Aircraft Combat Survivability: Analysis and Design
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
New York
.
2.
Lundstrom
,
E. A.
,
1988
, “
Structural Response of Flat Panels to Hydraulic Ram Pressure Loading
,”
Naval Weapons Center China Lake
,
Ridgecrest, CA
, Report No. ADA200410.
3.
Lundstrom
,
E. A.
, and
Fung
,
W. K.
,
1976
, “
Fluid Dynamic Analysis of Hydraulic Ram III (Result of Analysis)
,”
NASA STI/Recon, Naval Weapons Center China Lake
,
CA
, Report No. ADA031644.
4.
Lundstrom
,
E. A.
, and
Fung
,
W. K.
,
1976
, “
Fluid Dynamic Analysis of Hydraulic Ram IV (User's Manual for Pressure Wave Generation Model)
,”
Naval Weapons Center China Lake
,
Ridgecrest, CA
, Report No. ADA033462.
5.
Ji
,
Y.
,
Li
,
X.
,
Zhou
,
L.
,
Lan
,
X.
, and
Chen
,
A.
,
2020
, “
Comparison of the Hydrodynamic Ram Caused by One and Two Projectiles Impacting Water-Filled Containers
,”
Int. J. Impact Eng.
,
137
, p.
103467
.10.1016/j.ijimpeng.2019.103467
6.
Ji
,
Y.
,
Li
,
X.
,
Zhou
,
L.
, and
Lan
,
X.
,
2019
, “
Experimental and Numerical Study on the Cumulative Damage of Water-Filled Containers Impacted by Two Projectiles
,”
Thin-Walled Struct.
,
135
, pp.
45
64
.10.1016/j.tws.2018.10.043
7.
Disimile
,
P. J.
, and
Toy
,
N.
,
2015
, “
Liquid Spurt Caused by Hydrodynamic Ram
,”
Int. J. Impact Eng.
,
75
, pp.
65
74
.10.1016/j.ijimpeng.2014.08.001
8.
Chen
,
A.
,
Li
,
X.
,
Zhou
,
L.
, and Ji, Y.,
2019
, “
Experimental Study on the Characteristics of Liquid Spurt Caused by Hydrodynamic Ram
,”
31st International Symposium on Ballistics
, Hyderabad, India, Nov. 3–8, pp.
1819
1829
.https://www.researchgate.net/publication/337293500_Experimental_Study_on_the_Characteristics_of_Liquid_Spurt_Caused_by_Hydrodynamic_Ram
9.
Holm
,
D. P.
,
1973
, “
Hydraulic Ram Shock Wave and Cavitation Effects on Aircraft Fuel Cell Survivability
,”
Naval Postgraduate School
,
Monterey, CA
.
10.
Rayleigh
,
L.
,
1917
, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
11.
Fourest
,
T.
,
Laurens
,
J.-M.
,
Deletombe
,
E.
,
Dupas
,
J.
, and
Arrigoni
,
M.
,
2014
, “
Analysis of Bubbles Dynamics Created by Hydrodynamic Ram in Confined Geometries Using the Rayleigh-Plesset Equation
,”
Int. J. Impact Eng.
,
73
, pp.
66
74
.10.1016/j.ijimpeng.2014.05.008
12.
Fourest
,
T.
,
Laurens
,
J.-M.
,
Deletombe
,
E.
,
Dupas
,
J.
, and
Arrigoni
,
M.
,
2015
, “
Confined Rayleigh–Plesset Equation for Hydrodynamic Ram Analysis in Thin-Walled Containers under Ballistic Impacts
,”
Thin-Walled Struct.
,
86
, pp.
67
72
.10.1016/j.tws.2014.10.003
13.
Fourest
,
T.
,
Deletombe
,
E.
,
Faucher
,
V.
,
Arrigoni
,
M.
,
Dupas
,
J.
, and
Laurens
,
J.-M.
,
2017
, “
Comparison of Keller-Miksis Model and Finite Element Bubble Dynamics Simulations in a Confined Medium. Application to the Hydrodynamic Ram
,”
Eur. J. Mech. B/Fluids
, 68, pp.
66
75
.
14.
Varas
,
D.
,
López-Puente
,
J.
, and
Zaera
,
R.
,
2009
, “
Experimental Analysis of Fluid-Filled Aluminium Tubes Subjected to High-Velocity Impact
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
81
91
.10.1016/j.ijimpeng.2008.04.006
15.
Lee
,
M.
,
Longoria
,
R. G.
, and
Wilson
,
D. E.
,
1997
, “
Ballistic Waves in High-Speed Water Entry
,”
J. Fluids Struct.
,
11
(
7
), pp.
819
844
.10.1006/jfls.1997.0103
16.
Lee
,
M.
,
1997
, “
Generation of Shock Waves by a Body During High-Speed Water Entry
,” Ph.D. thesis,
The University of Texas at Austin
,
Austin, TX
.
17.
Lee
,
M.
,
Longoria
,
R. G.
, and
Wilson
,
D. E.
,
1997
, “
Cavity Dynamics in High-Speed Water Entry
,”
Phys. Fluids
,
9
(
3
), pp.
540
550
.10.1063/1.869472
18.
Guo
,
Z.
,
2012
, “
Research on Characteristics of Projectile Water Entry and Ballistic Resistance of Targets Under Different Mediums
,”
Harbin Institute of Technology
,
Harbin, China
.
19.
Guo
,
Z. T.
,
Zhang
,
W.
, and
Wang
,
C.
,
2012
, “
Experimental and Theoretical Study on the High-Speed Horizontal Water Entry Behaviors of Cylindrical Projectiles
,”
J. Hydrodyn.
,
24
(
2
), pp.
217
225
.10.1016/S1001-6058(11)60237-0
20.
Guo
,
Z.
,
Zhang
,
W.
,
Xiao
,
X.
,
Wei
,
G.
, and
Ren
,
P.
,
2012
, “
An Investigation Into Horizontal Water Entry Behaviors of Projectiles With Different Nose Shapes
,”
Int. J. Impact Eng.
,
49
, pp.
43
60
.10.1016/j.ijimpeng.2012.04.004
21.
Ma
,
L.
,
Li
,
X.
,
Zhou
,
L.
, and
Zhang
,
G.
,
2018
, “
Numerical Simulation and Experimental Study on High-Speed Fragment Impact Filling Different Liquid Containers
,”
J. Vib. Shock
,
37
(
24
), pp.
115
122
(in Chinese).10.13465/j.cnki.jvs.2018.24.018
22.
Charters
,
A. C.
, and
Thomas
,
R. N.
,
1945
, “
The Aerodynamic Performance of Small Spheres From Subsonic to High Supersonic Velocities
,”
J. Aeronaut. Sci.
,
12
(
4
), pp.
468
476
.10.2514/8.11287
23.
Brauer
,
H.
, and
Sucker
,
D.
,
1976
, “
Umströmung von Platten, Zylindern und Kugeln
,”
Chem. Ing. Tech.
,
48
(
8
), pp.
665
671
.10.1002/cite.330480803
24.
Lecysyn
,
N.
,
Dandrieux
,
A.
,
Heymes
,
F.
,
Slangen
,
P.
,
Munier
,
L.
,
Lapebie
,
E.
,
Gallic
,
C. L.
, and
Dusserre
,
G.
,
2008
, “
Preliminary Study of Ballistic Impact on an Industrial Tank: Projectile Velocity Decay
,”
J. Loss Prev. Process Ind.
,
21
(
6
), pp.
627
634
.10.1016/j.jlp.2008.06.006
25.
Hoerner
,
S. F.
,
1965
, “
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
,”
Midland Park, NJ
.
26.
Swanson
,
L. A.
,
2007
, “
A Detailed Examination of the Pressure Produced by a Hydrodynamic Ram Event
,”
University of Cincinnati
,
Cincinnati, OH
.
27.
Lecysyn
,
N.
,
Bony-Dandrieux
,
A.
,
Aprin
,
L.
,
Heymes
,
F.
,
Slangen
,
P.
,
Dusserre
,
G.
,
Munier
,
L.
, and
Le Gallic
,
C.
,
2010
, “
Experimental Study of Hydraulic Ram Effects on a Liquid Storage Tank: Analysis of Overpressure and Cavitation Induced by a High-Speed Projectile
,”
J. Hazard. Mater.
,
178
(
1–3
), pp.
635
643
.10.1016/j.jhazmat.2010.01.132
28.
Patterson
,
J. W.
,
1975
, “
Fuel Cell Pressure Loading During Hydraulic Ram
,”
Naval Postgraduate School
,
Monterey, CA
.
29.
Varas
,
D.
,
Zaera
,
R.
, and
López-Puente
,
J.
,
2011
, “
Experimental Study of CFRP Fluid-Filled Tubes Subjected to High-Velocity Impact
,”
Compos. Struct.
,
93
(
10
), pp.
2598
2609
.10.1016/j.compstruct.2011.04.025
30.
Kwon
,
Y.
, and
Yun
,
K.
,
2017
, “
Numerical Parametric Study of Hydrodynamic Ram
,”
Int. J. Multiphys.
,
11
(
1
), pp.
15
47
.10.21152/1750-9548.11.1.15
31.
Deletombe
,
E.
,
Fabis
,
J.
, and
Dupas
,
J.
,
2011
, “
Vulnerability of Fuel Tanks With Respect to Hydrodynamic Ram Pressure—Experiments and FE Modellings
,” 10e Colloque National en Calcul Des Structures,
Giens, France
, May 9–13, No. hal-00589901.
32.
Disimile
,
P. J.
,
Swanson
,
L. A.
, and
Toy
,
N.
,
2009
, “
The Hydrodynamic Ram Pressure Generated by Spherical Projectiles
,”
Int. J. Impact Eng.
,
36
(
6
), pp.
821
829
.10.1016/j.ijimpeng.2008.12.009
33.
Gonzalez
,
M.
,
Sparks
,
C.
,
Kubes
,
C.
, and
Girard
,
W.
,
2008
, “
Comparison of the Tumbling Behavior and Pressure Evolution of Several API Projectiles in a Hydrodynamic Ram Environment
,”
AIAA Paper No. 2008-1965
. 10.2514/6.2008-1965
34.
Bates
Jr
,
K. S.
,
1973
, “
Aircraft Fuel Tank Entry Wall-Projectile Interaction Studies
,”
Naval Postgraduate School
,
Monterey, CA
.
35.
Fry
,
P. F.
,
1976
, “
A Review of the Analyses of Hydrodynamic Ram
,” Air Force Flight Dynamics Lab Wright-Patterson AFB, OH.
36.
Munson
,
B. R.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2013
,
Fluid Mechanics
,
Wiley
,
Singapore
.
37.
Duclaux
,
V.
,
Caillé
,
F.
,
Duez
,
C.
,
Ybert
,
C.
,
Bocquet
,
L.
, and
Clanet
,
C.
,
2007
, “
Dynamics of Transient Cavities
,”
J. Fluid Mech.
,
591
, pp.
1
19
.10.1017/S0022112007007343
38.
Aristoff
,
J. M.
, and
Bush
,
J. W. M.
,
2009
, “
Water Entry of Small Hydrophobic Spheres
,”
J. Fluid Mech.
,
619
, pp.
45
78
.10.1017/S0022112008004382
39.
Aristoff
,
J. M.
,
Truscott
,
T. T.
,
Techet
,
A. H.
, and
Bush
,
J. W. M.
,
2010
, “
The Water Entry of Decelerating Spheres
,”
Phys. Fluids
,
22
(
3
), p.
032102
.10.1063/1.3309454
40.
Birkhoff
,
G.
, and
Zarantonello
,
E. H.
,
1957
,
Jets, Wakes and Cavities
,
Academic Press
,
New York
.
You do not currently have access to this content.