Abstract

Recently, a method of inducing compressive residual stresses in the vicinity of the walls of a thermally autofrettaged cylinder was proposed. In the proposed method, the thermally autofrettaged cylinder was heated in such a manner that its outer wall attained a temperature more than the lower critical temperature and the inner wall was at a sufficiently lower temperature. When the cylinder was quenched, compressive residual stresses were induced in the vicinity of the cylinder walls. This article investigates the feasibility of the same procedure for a hydraulic-autofrettaged cylinder made of AISI 1080 steel. A finite element method (FEM)-based analysis is carried out using commercial package abaqus by incorporating microstructure and temperature-dependent material properties. The results indicate that the heat treatment design proposed for the thermally autofrettaged cylinder to induce compressive residual stresses at the outer wall can also be adapted for a hydraulic-autofrettaged cylinder. However, for cylinders subjected to high percentage of autofrettage, heating of the outer wall needs to be carried out well below the lower critical temperature. In fact, this is an advantage in terms of energy saving and can be implemented even for cylinders subjected to a low percentage of autofrettage.

References

1.
Faupel
,
J. H.
,
1955
, “
Residual Stresses in Heavy-Wall Cylinders
,”
J. Franklin Inst.
,
259
(
5
), pp.
405
419
.10.1016/0016-0032(55)90681-5
2.
Jacob
,
L.
,
1907
, “
La Résistance et L'équilibre Élastique Des Tubes Frettés
,”
Meml. L'artillerie Nav.
,
1
(
1907
), pp.
43
155
.
3.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.10.1007/BF02325691
4.
Mote
,
J. D.
,
Ching
,
L. K. W.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
,
Explosive Autofrettage of Cannon Barrels
,
Army Materials and Research Center
,
Watertown, MA
, Paper No. AMMRC CR 70–25.
5.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.10.1115/1.4030025
6.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.10.1016/j.matdes.2016.05.062
7.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.10.1115/1.4039206
8.
Seifi
,
R.
, and
Babalhavaeji
,
M.
,
2012
, “
Bursting Pressure of Autofrettaged Cylinders With Inclined External Cracks
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
112
119
.10.1016/j.ijpvp.2011.10.018
9.
Parker
,
A. P.
,
1981
, “
Stress Intensity and Fatigue Crack Growth in Multiply-Cracked, Pressurized, Partially Autofrettaged Thick Cylinders
,”
Fatigue Fract. Eng. Mater. Struct.
,
4
(
4
), pp.
321
330
.10.1111/j.1460-2695.1981.tb01129.x
10.
Franklin
,
G. J.
, and
Morrison
,
J. L. M.
,
1960
, “
Autofrettage of Cylinders: Prediction of Pressure/External Expansion Curves and Calculation of Residual Stresses
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
947
974
.10.1243/PIME_PROC_1960_174_069_02
11.
Sedighi
,
M.
, and
Jabbari
,
A. H.
,
2013
, “
Investigation of Residual Stresses in Thick-Walled Vessels With Combination of Autofrettage and Wire-Winding
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
295
301
.10.1016/j.ijpvp.2013.09.003
12.
Koh
,
S. K.
, and
Stephens
,
R. I.
,
1991
, “
Stress Analysis of an Autofrettaged Thick-Walled Pressure Vessel Containing an External Groove
,”
Int. J. Pressure Vessels Piping
,
46
(
1
), pp.
95
111
.10.1016/0308-0161(91)90071-9
13.
Hashmi
,
S.
,
2016
,
Comprehensive Materials Finishing
,
Elsevier
,
Oxford Waltham, MA
.
14.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
An Analysis of Thermal Autofrettage Process With Heat Treatment
,”
Int. J. Mech. Sci.
,
144
, pp.
134
145
.10.1016/j.ijmecsci.2018.05.053
15.
Shufen
,
R.
,
Mahanta
,
N.
, and
Dixit
,
U. S.
,
2019
, “
Development of a Thermal Autofrettage Setup to Generate Compressive Residual Stresses on the Surfaces of a Cylinder
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p. 051403.10.1115/1.4044119
16.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2017
, “
A Finite Element Method Study of Combined Hydraulic and Thermal Autofrettage Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041204
.10.1115/1.4036143
17.
Wang
,
K. F.
,
Chandrasekar
,
S.
, and
Yang
,
H. T. Y.
,
1997
, “
Experimental and Computational Study of the Quenching of Carbon Steel
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
257
265
.10.1115/1.2831102
18.
Dixit
,
P. M.
, and
Dixit
,
U. S.
,
2008
,
Modeling of Metal Forming and Machining Processes: By Finite Element and Soft Computing Methods
,
Springer
,
London, UK
.
19.
Denis
,
S.
,
Sjöström
,
S.
, and
Simon
,
A.
,
1987
, “
Coupled Temperature, Stress, Phase Transformation Calculation
,”
MTA
,
18
(
7
), pp.
1203
1212
.10.1007/BF02647190
20.
Avitzur
,
B.
,
1994
, “
Autofrettage—Stress Distribution Under Load and Retained Stresses After Depressurization
,”
Int. J. Pressure Vessels Piping
,
57
(
3
), pp.
271
287
.10.1016/0308-0161(94)90031-0
21.
Stacey
,
A.
,
MacGillivary
,
H. J.
,
Webster
,
G. A.
,
Webster
,
P. J.
, and
Ziebeck
,
K. R. A.
,
1985
, “
Measurement of Residual Stresses by Neutron Diffraction
,”
J. Strain Anal.
,
20
(
2
), pp.
93
100
.10.1243/03093247V202093
22.
Gür
,
C. H.
, and
Tekkaya
,
A. E.
,
2001
, “
Numerical Investigation of Non-Homogeneous Plastic Deformation in Quenching Process
,”
Mater. Sci. Eng. A
,
319–321
, pp.
164
169
.10.1016/S0921-5093(01)01064-4
23.
Canale
,
L.
,
de
,
C. F.
,
Sarmiento
,
G. S.
,
Totten
,
G. E.
, and
Penha
,
R. N.
,
2005
, “
Effect of Vegetable Oil Oxidation on the Ability to Harden AISI 4140 Steel
,” Belo Horizonte,Brazil, pp.
3209
3217
.https://www.academia.edu/23298152/Effect_of_Vegetable_Oil_Oxidation_on_the_Ability_to_Harden_Aisi_4140_Steel
24.
Cheng
,
H.
,
Xie
,
J.
, and
Li
,
J.
,
2004
, “
Determination of Surface Heat-Transfer Coefficients of Steel Cylinder With Phase Transformation During Gas Quenching With High Pressures
,”
Comput. Mater. Sci.
,
29
(
4
), pp.
453
458
.10.1016/j.commatsci.2003.11.003
25.
De Oliveira
,
W. P.
,
Savi
,
M. A.
,
Pacheco
,
P. M. C. L.
, and
De Souza
,
L. F. G.
,
2010
, “
Thermomechanical Analysis of Steel Cylinders Quenching Using a Constitutive Model With Diffusional and Non-Diffusional Phase Transformations
,”
Mech. Mater.
,
42
(
1
), pp.
31
43
.10.1016/j.mechmat.2009.09.006
26.
Phadke
,
S.
,
Pauskar
,
P.
, and
Shivpuri
,
R.
,
2004
, “
Computational Modeling of Phase Transformations and Mechanical Properties During the Cooling of Hot Rolled Rod
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
107
115
.10.1016/j.jmatprotec.2004.01.027
27.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2009
,
Materials Science and Engineering: An Introduction
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.