Abstract

This paper presents a numerical model to simulate the initial stress stiffening effect, induced by radial pressure and/or axial load on the dynamic behavior of axisymmetric shells. This effect is particularly important for thin shells since their bending stiffness is very small compared to membrane stiffness. The theoretical formulation is based on a combination of the finite element method and classical shell theory. For a perfect geometrical consistency, two semi-analytical finite elements, conical and cylindrical, are used to model axisymmetric shells. The displacement functions are derived from exact solutions of Sanders' shell equilibrium equations. The results obtained using this approach are remarkably accurate. The potential energy is calculated to estimate the initial stiffening effect using direct membrane forces per unit width and rotations about the orthogonal axes. The final stiffness matrix of each finite element is composed of the regular stiffness matrix and the added stiffness matrix generated by membrane loads. The frequencies of vibration are compared with those obtained in other experimental and theoretical research works and very good agreement is observed.

References

1.
Fung
,
Y. C.
,
Sechler
,
E. E.
, and
Kaplan
,
A.
,
1957
, “
On the Vibration of Thin Cylindrical Shells Under Internal Pressure
,”
J. Aeronaut. Sci.
,
24
(
9
), pp.
650
660
.10.2514/8.3934
2.
Miserentino
,
R.
, and
Vosteen
,
L. F.
,
1965
, “
Vibration Tests of Pressurized Thin-Walled Cylindrical Shells, National Aeronautics and Space Administration Hampton VA Langley Research Center
,” NASA, Washington, DC, Report No.
TN-D-3066
. https://ntrs.nasa.gov/api/citations/19650026237/downloads/19650026237.pdf
3.
Reissner
,
E.
,
1955
, “
Non-Linear Effects in Vibrations of Cylindrical Shells
,” Ramo-Wooldridge Corporation Guided Missile Research Division, Aeromechanics Section, Los Angeles, CA.
4.
Weingarten
,
V. I.
,
1966
, “
The Effect of Internal or External Pressure on the Free Vibrations of Conical Shells
,”
Int. J. Mech. Sci.
,
8
(
2
), pp.
115
124
.10.1016/0020-7403(66)90070-1
5.
Dixon
,
S. C.
, and
Hudson
,
M. L.
,
1970
, “
Flutter, Vibration, and Buckling of Truncated Orthotropic Conical Shells With Generalized Elastic Edge Restraint
,” NASA, Washington, DC, Report No.
TN-D-5759
.https://core.ac.uk/download/pdf/80656029.pdf
6.
Miserentino
,
R.
, and
Dixon
,
S. C.
,
1971
, “
Vibration and Flutter Tests of a Pressurized Thin-Walled Truncated Conical Shell
,” NASA, Washington, DC, Report No.
TN-D-6106
.https://ntrs.nasa.gov/api/citations/19710007880/downloads/19710007880.pdf
7.
Ueda
,
T.
,
Kobayashi
,
S.
, and
Kihira
,
M.
,
1977
, “
Supersonic Flutter of Truncated Conical Shells
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
20
(
47
), pp.
13
30
.
8.
Tong
,
L.
,
1996
, “
Effect of Axial Load on Free Vibration of Orthotropic Truncated Conical Shells
,”
Trans. ASME
,
118
(
2
), pp.
164
168
.10.1115/1.2889644
9.
Lam
,
K. Y.
, and
Hua
,
L.
,
2000
, “
Influence of Initial Pressure on Frequency Characteristics of a Rotating Truncated Circular Conical Shell
,”
Int. J. Mech. Sci.
,
42
(
2
), pp.
213
236
.10.1016/S0020-7403(98)00125-8
10.
Zhang
,
Y. L.
,
Gorman
,
D. G.
, and
Reese
,
J. M.
,
2003
, “
Vibration of Prestressed Thin Cylindrical Shells Conveying Fluid
,”
Thin-Walled Struct.
,
41
(
12
), pp.
1103
1127
.10.1016/S0263-8231(03)00108-3
11.
Lindholm
,
U. S.
,
Kana
,
D. D.
, and
Abramson
,
H. N.
,
1962
, “
Breathing Vibrations of a Circular Cylindrical Shell With an Internal Liquid
,”
J. Aerosp. Sci.
,
29
(
9
), pp.
1052
1059
.10.2514/8.9693
12.
Sofiyev
,
A. H.
,
Omurtag
,
M. H.
, and
Schnack
,
E.
,
2009
, “
The Vibration and Stability of Orthotropic Conical Shells With Non-Homogeneous Material Properties Under a Hydrostatic Pressure
,”
J. Sound Vib.
,
319
(
3–5
), pp.
963
983
.10.1016/j.jsv.2008.06.033
13.
Heydarpour
,
Y.
,
Malekzadeh
,
P.
, and
Aghdam
,
M. M.
,
2014
, “
Free Vibration of Functionally Graded Truncated Conical Shells Under Internal Pressure
,”
Meccanica
,
49
(
2
), pp.
267
282
.10.1007/s11012-013-9791-y
14.
Chiba
,
M.
,
Yamaki
,
N.
, and
Tani
,
J.
,
1984
, “
Free Vibration of a Clamped-Free Circular Cylindrical Shell Partially Filled With Liquid—Part I: Theoretical Analysis
,”
Thin-Walled Struct.
,
2
(
3
), pp.
265
284
.10.1016/0263-8231(84)90022-3
15.
Chiba
,
M.
,
Yamaki
,
N.
, and
Tani
,
J.
,
1984
, “
Free Vibration of a Clamped-Free Circular Cylindrical Shell Partially Filled With Liquid—Part II: Numerical Results
,”
Thin-Walled Struct.
,
2
(
4
), pp.
307
324
.10.1016/0263-8231(84)90002-8
16.
Chiba
,
M.
,
Yamaki
,
N.
, and
Tani
,
J.
,
1985
, “
Free Vibration of a Clamped-Free Circular Cylindrical Shell Partially Filled With Liquid—Part III: Experimental Results
,”
Thin-Walled Struct.
,
3
(
1
), pp.
1
14
.10.1016/0263-8231(85)90016-3
17.
Yamaki
,
N.
,
Tani
,
J.
, and
Yamaji
,
T.
,
1984
, “
Free-Vibration of a Clamped Clamped Circular Cylindrical-Shell Partially Filled With Liquid
,”
J. Sound Vib.
,
94
(
4
), pp.
531
550
.
18.
Chiba
,
M.
, and
Osumi
,
H.
,
1998
, “
Free Vibration and Buckling of a Partially Submerged Clamped Cylindrical Tank Under Compression
,”
J. Sound Vib.
,
209
(
5
), pp.
771
796
.10.1006/jsvi.1997.1282
19.
Tani
,
J.
,
Haiji
,
H.
, and
Chiba
,
M.
,
1986
, “
Free Vibration of Fluid-Coupled Coaxial Cylindrical Shells, Shells, Membranes and Space Frames
,”
Proceedings of the IASS Symposium
, Vol.
1
, Osaka, Japan, Sept. 15–19, pp.
57
64
.
20.
Chiba
,
M.
,
1996
, “
Free Vibration of a Partially Liquid‐Filled and Partially Submerged, Clamped‐Free Circular Cylindrical Shell
,”
J. Acoust. Soc. Am.
,
100
(
4
), pp.
2170
2180
.10.1121/1.417494
21.
Lakis
,
A. A.
, and
Paidoussis
,
M. P.
,
1972
, “
Dynamic Analysis of Axially Non-Uniform Thin Cylindrical Shells
,”
J. Mech. Eng. Sci.
,
14
(
1
), pp.
49
71
.10.1243/JMES_JOUR_1972_014_009_02
22.
Sanders
,
J. L.
, Jr.
,
1959
, “
An Improved First-Approximation Theory for Thin Shells
,” NASA, Washington, DC, Report No.
R-24
.https://archive.org/details/nasa_techdoc_19980227978#:~:text=A%20theory%20is%20derived%20in,terms%20of%20three%20stress%20friction.
23.
Toorani
,
M. H.
, and
Lakis
,
A. A.
,
2000
, “
General Equations of Anisotropic Plates and Shells Including Transverse Shear Deformations, Rotary Inertia and Initial Curvature Effects
,”
J. Sound Vib.
,
237
(
4
), pp.
561
615
.10.1006/jsvi.2000.3073
24.
Flügge
,
W.
,
1973
, “
Buckling of Shells
,”
Stresses in Shells
,
Springer
,
Berlin
, pp.
433
506
.
25.
Lakis
,
A. A.
,
Van Dyke
,
P.
, and
Ouriche
,
H.
,
1992
, “
Dynamic Analysis of Anisotropic Fluid-Filled Conical Shells
,”
J. Fluids Struct.
,
6
(
2
), pp.
135
162
.10.1016/0889-9746(92)90042-2
26.
Kerboua
,
Y.
,
Lakis
,
A. A.
, and
Hmila
,
M.
,
2010
, “
Vibration Analysis of Truncated Conical Shells Subjected to Flowing Fluid
,”
Appl. Math. Modell.
,
34
(
3
), pp.
791
809
.10.1016/j.apm.2009.06.028
27.
Lakis
,
A. A.
, and
Ouriche
,
H.
,
1986
, “
Dynamic Analysis of Anisotropic Conical Shells
,” École Polytechnique de Montréal, Montreal, PQ, Canada, Report No. EPM/RT-86-36.
28.
MacNeal
,
R. H.
,
1972
, “
The Nastran Theoretical Manual
,” NASA, Washington, DC, Report No. SP-221.
29.
Kerboua
,
Y.
, and
Lakis
,
A. A.
,
2016
, “
Numerical Model to Analyze the Aerodynamic Behavior of a Combined Conical–Cylindrical Shell
,”
Aerosp. Sci. Technol.
,
58
, pp.
601
617
.
30.
Mazúch
,
T.
,
Horacek
,
J.
,
Trnka
,
J.
, and
Veselý
,
J.
,
1996
, “
Natural Modes and Frequencies of a Thin Clamped-Free Steel Cylindrical Storage Tank Partially Filled With Water: FEM and Measurement
,”
J. Sound Vib.
,
193
(
3
), pp.
669
690
.10.1006/jsvi.1996.0307
31.
Kohnke
,
P.
,
2009
, “
Theory Reference for the Mechanical APDL and Mechanical Applications
,” Ansys, Canonsburg, PA.https://www.researchgate.net/file.PostFileLoader.html?id=5687835e5cd9e345098b4568&assetKey=AS%3A313357117132800%401451721566538
32.
Jawad
,
M. H.
,
1980
, “
Design of Conical Shells Under External Loads
,”
ASME J. Pressure Vessel Technol.
,
102
(
2
), pp.
230
238
.10.1115/1.3263325
33.
Singer
,
J.
,
1961
, “
Buckling of Circular Conical Shells Under Axisymmetrical External Pressure
,”
J. Mech. Eng. Sci.
,
3
(
4
), pp.
330
339
.10.1243/JMES_JOUR_1961_003_045_02
34.
Seide
,
P.
,
1956
, “
Axisymmetrical Buckling of Circular Cones Under Axial Compression
,”
ASME J. Appl. Mech.
,
23
(
4
), pp.
625
628
.
You do not currently have access to this content.