Abstract
In this study, tensile tests of 304 and 316 austenitic stainless steels (ASS) at various strain rates were performed to investigate the strain rate effect on tensile properties. It is shown that the strain rate effect on stress depends not only on the strain rate but also on the plastic strain level. Accordingly, a modification of the existing Johnson–Cook (J–C) model is proposed to incorporate the interacting effect of plastic strain and strain rate for 304 and 316 ASS. The proposed modified J–C model can reduce the difference from the experimental data at various strain levels, compared to the existing J–C model.
Issue Section:
Materials and Fabrication
References
1.
Lin
,
C. Y.
,
Wu
,
T. Y.
, and
Huang
,
C. C.
, 2015
, “
Nonlinear Dynamic Impact Analysis for Installing a Dry Storage Canister Into a Vertical Concrete Cask
,” Int. J. Pressure Vessels Piping
,
131
, pp. 22
–35
.10.1016/j.ijpvp.2015.04.0062.
Wu
,
T. Y.
,
Lee
,
H. Y.
, and
Kang
,
L. C.
, 2012
, “
Dynamic Response Analysis of a Spent-Fuel Dry Storage Cask Under Vertical Drop Accident
,” Ann. Nucl. Energy
,
42
, pp. 18
–29
.10.1016/j.anucene.2011.12.0163.
Kim
,
S. P.
,
Kim
,
J.
,
Sohn
,
D.
,
Kwon
,
H.
, and
Shin
,
M.
, 2019
, “
Stress-Based Vs. Strain-Based Safety Evaluations of Spent Nuclear Fuel Transport Casks in Energy-Limited Events
,” Nucl. Eng. Des.
,
355
, p. 110324
.10.1016/j.nucengdes.2019.1103244.
Liang
,
R.
, and
Khan
,
A. S.
, 1999
, “
A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures
,” Int. J. Plast.
,
15
(9
), pp. 963
–980
.10.1016/S0749-6419(99)00021-25.
Khan
,
A. S.
,
Suh
,
Y. S.
, and
Kazmi
,
R.
, 2004
, “
Quasi-Static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys
,” Int. J. Plast.
,
20
(12
), pp. 2233
–2248
.10.1016/j.ijplas.2003.06.0056.
Lodygowski
,
T.
, and
Rusinek
,
A.
, 2014
, Constitutive Relations Under Impact Loading
,
Springer
,
Heidelberg, Germany
.7.
Cowper
,
G.
, and
Symonds
,
P.
, 1957
, “
Strain Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beam
,” Division of Applied Mathematics, Brown University, Providence, RI, Report No. 28
.https://apps.dtic.mil/dtic/tr/fulltext/u2/144762.pdf8.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983
, “
A Constitutive Model and Data From Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,” Seventh International Symposium on Ballistics
, The Hague, The Netherlands, Apr. 19–21, pp. 541
–547
.https://ia800102.us.archive.org/9/items/AConstitutiveModelAndDataForMetals/A%20constitutive%20model%20and%20data%20for%20metals_text.pdf9.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,” Eng. Fract. Mech.
,
21
(1
), pp. 31
–48
.10.1016/0013-7944(85)90052-910.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
, 1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,” J. Appl. Phys.
,
61
(5
), pp. 1816
–1825
.10.1063/1.33802411.
Mecking
,
H.
, and
Kocks
,
U. F.
, 1981
, “
Kinetics of Flow and Strain-Hardening
,” Acta Metall.
,
29
(11
), pp. 1865
–1875
.10.1016/0001-6160(81)90112-712.
Follansbee
,
P. S.
, and
Kocks
,
U. F.
, 1988
, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,” Acta Metall.
,
36
(1
), pp. 81
–93
.10.1016/0001-6160(88)90030-213.
Huh
,
H.
,
Lee
,
H. J.
, and
Song
,
J. H.
, 2012
, “
Dynamic Hardening Equation of the Auto-Body Steel Sheet With the Variation of Temperature
,” Int. J. Automot. Technol.
,
13
(1
), pp. 43
–60
.10.1007/s12239-012-0005-814.
Ludwik
,
P.
, 1909
, Elemente Der Technologischen Mechanik
, Springer, Berlin.15.
Maheshwari
,
A. K.
,
Pathak
,
K. K.
,
Ramakrishnan
,
N.
, and
Narayan
,
S. P.
, 2010
, “
Modified Johnson-Cook Material Flow Model for Hot Deformation Processing
,” J. Mater. Sci.
,
45
(4
), pp. 859
–864
.10.1007/s10853-009-4010-x16.
Zhang
,
D. N.
,
Shangguan
,
Q. Q.
,
Xie
,
C. J.
, and
Liu
,
F.
, 2015
, “
A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy
,” J. Alloys Compd.
,
619
, pp. 186
–194
.10.1016/j.jallcom.2014.09.00217.
Huh
,
H.
, and
Kang
,
W. J.
, 2002
, “
Crash-Worthiness Assessment of Thin-Walled Structures With the High-Strength Steel Sheet
,” Int. J. Veh. Des.
,
30
(1/2
), pp. 1
–21
.10.1504/IJVD.2002.00202218.
Hou
,
X.
,
Liu
,
Z.
,
Wang
,
B.
,
Lv
,
W.
,
Liang
,
X.
, and
Hua
,
Y.
, 2018
, “
Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V Over Thewide Ranges of Strain Rate and Temperature
,” Materials (Basel)
,
11
(6
), p. 938
.10.3390/ma1106093819.
Tan
,
J. Q.
,
Zhan
,
M.
,
Liu
,
S.
,
Huang
,
T.
,
Guo
,
J.
, and
Yang
,
H.
, 2015
, “
A Modified Johnson-Cook Model for Tensile Flow Behaviors of 7050-T7451 Aluminum Alloy at High Strain Rates
,” Mater. Sci. Eng. A
,
631
, pp. 214
–219
.10.1016/j.msea.2015.02.01020.
Li
,
H. Y.
,
Wang
,
X. F.
,
Duan
,
J. Y.
, and
Liu
,
J. J.
, 2013
, “
A Modified Johnson Cook Model for Elevated Temperature Flow Behavior of T24 Steel
,” Mater. Sci. Eng. A
,
577
, pp. 138
–146
.10.1016/j.msea.2013.04.04121.
Lin
,
Y. C.
,
Li
,
Q. F.
,
Xia
,
Y. C.
, and
Li
,
L. T.
, 2012
, “
A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy
,” Mater. Sci. Eng. A
,
534
, pp. 654
–662
.10.1016/j.msea.2011.12.02322.
Olson
,
G. B.
, and
Cohen
,
M.
, 1975
, “
Kinetics of Strain-Induced Martensitic Nucleation
,” Metall. Trans. A
,
6
(4
), pp. 791
–795
.10.1007/BF0267230123.
Hecker
,
S. S.
,
Stout
,
M. G.
,
Staudhammer
,
K. P.
, and
Smith
,
J. L.
, 1982
, “
Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior
,” Metall. Trans. A
,
13
(4
), pp. 619
–626
.10.1007/BF0264442724.
Talonen
,
J.
,
Nenonen
,
P.
,
Pape
,
G.
, and
Hänninen
,
H.
, 2005
, “
Effect of Strain Rate on the Strain-Induced γ → α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels
,” Metall. Mater. Trans. A
,
36
, pp. 421
–432
.10.1007/s11661-005-0313-y25.
Qin
,
Z.
, and
Xia
,
Y.
, 2020
, “
Role of Strain-Induced Martensitic Phase Transformation in Mechanical Response of 304 L Steel at Different Strain-Rates and Temperatures
,” J. Mater. Process. Technol.
,
280
, p. 116613
.10.1016/j.jmatprotec.2020.11661326.
Lichtenfeld
,
J. A.
,
Mataya
,
M. C.
, and
Van Tyne
,
C. J.
, 2006
, “
Effect of Strain Rate on Stress-Strain Behavior of Alloy 309 and 304 L Austenitic Stainless Steel
,” Metall. Mater. Trans. A
,
37
(1
), pp. 147
–161
.10.1007/s11661-006-0160-527.
Gupta
,
A. K.
,
Krishnamurthy
,
H. N.
,
Singh
,
Y.
,
Prasad
,
K. M.
, and
Singh
,
S. K.
, 2013
, “
Development of Constitutive Models for Dynamic Strain Aging Regime in Austenitic Stainless Steel 304
,” Mater. Des.
,
45
, pp. 616
–627
.10.1016/j.matdes.2012.09.04128.
Cadoni
,
E.
,
Fenu
,
L.
, and
Forni
,
D.
, 2012
, “
Strain Rate Behaviour in Tension of Austenitic Stainless Steel Used for Reinforcing Bars
,” Constr. Build. Mater.
,
35
, pp. 399
–407
.10.1016/j.conbuildmat.2012.04.08129.
Kotkunde
,
N.
,
Krishnamurthy
,
H. N.
,
Singh
,
S. K.
, and
Jella
,
G.
, 2018
, “
Experimental and Numerical Investigations on Hot Deformation Behavior and Processing Maps for ASS 304 and ASS 316
,” High Temp. Mater. Process.
,
37
(9–10
), pp. 873
–888
.10.1515/htmp-2017-004730.
Pham
,
M. S.
,
Dovgyy
,
B.
, and
Hooper
,
P. A.
, 2017
, “
Twinning Induced Plasticity in Austenitic Stainless Steel 316 L Made by Additive Manufacturing
,” Mater. Sci. Eng. A
,
704
, pp. 102
–111
.10.1016/j.msea.2017.07.08231.
Shen
,
Y. F.
,
Li
,
X. X.
,
Sun
,
X.
,
Wang
,
Y. D.
, and
Zuo
,
L.
, 2012
, “
Twinning and Martensite in a 304 Austenitic Stainless Steel
,” Mater. Sci. Eng. A
,
552
, pp. 514
–522
.10.1016/j.msea.2012.05.08032.
Weidner
,
A.
, 2020
, Deformation Processes in TRIP/TWIP Steels
,
Springer
,
Heidelberg, Germany
.33.
Khan
,
A. S.
, and
Liang
,
R.
, 1999
, “
Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling
,” Int. J. Plast.
,
15
(10
), pp. 1089
–1109
.10.1016/S0749-6419(99)00030-334.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
, 1991
, “
Determination of Constants and Comparison of Results for Various Constitutive Models
,” J. Phys. IV
,
1
(C3
), pp. C3-853
–C3-860
.10.1051/jp4:19913119Copyright © 2022 by ASME
You do not currently have access to this content.