Abstract

A method to determine lower and upper bound limit loads called interpolated moduli adjustment technique (IMAT) is proposed in this article. This method is based on iterative linear elastic analyses and is applied to several test cases of practical interest. IMAT fully conforms to the classical lower and upper bound theorems. In all the cases, the upper and lower bound limit loads converge, thereby establishing the robustness of the technique. The results from IMAT correlate with nonlinear finite element analysis consistently within 3%.

References

1.
Drucker
,
D. C.
,
Prager
,
W.
, and
Greenberg
,
H. J.
,
1952
, “
Extended Limit Design Theorems for Continuous Media
,”
Q. Appl. Math.
,
9
(
4
), pp.
381
389
.10.1090/qam/45573
2.
Marriott
,
D. L.
,
1988
, “
Evaluation of Deformation and Load Control of Stresses Under Inelastic Conditions Using Elastic Finite Element Analysis
,”
Proceedings, ASME PVP-Vol. 136, Pittsburgh, PA, pp. 3–9
.
3.
Seshadri
,
R.
,
1991
, “
The Generalized Local Stress Strain (Gloss) Analysis - Theory and Applications
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
219
227
.10.1115/1.2928749
4.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Method for Estimating Limit Loads by Iterative Elastic Analysis. I—Simple Examples
,”
Int. J. Pressure Vessels Piping
,
53
(
1
), pp.
77
95
.10.1016/0308-0161(93)90105-3
5.
Ponter
,
A.
, and
Carter
,
K.
,
1997
, “
Limit State Solutions, Based Upon Linear Elastic Solutions With a Spatially Varying Elastic Modulus
,”
Comput. Methods Appl. Mech. Eng.
,
140
(
3–4
), pp.
237
258
.10.1016/S0045-7825(96)01104-8
6.
Reinhardt
,
W.
, and
Mangalaramanan
,
S. P.
,
2000
, “
Plastic Limit Analysis of a Tubesheet Using an Elastic Modulus Modification Method
,”
Proceedings, ASME PVP-Vol. 400
, Seattle, WA, pp. 253–261.https://www.researchgate.net/publication/288168043_Plastic_limit_analysis_of_a_tubesheet_using_an_elastic_modulus_modification_method
7.
Reinhardt
,
W. D.
, and
Mangalaramanan
,
S. P.
,
2001
, “
Efficient Tubesheet Design Using Repeated Elastic Limit Analysis Technique
,”
ASME J. Pressure Vessel Technol.
,
123
(
2
), pp.
197
202
.10.1115/1.1359526
8.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
,
1992
, “
Limit Loads of Mechanical Components and Structures Using the Gloss r-Node Method
,”
ASME: J. Pressure Vessel Technol.
,
114
(
2
), pp.
201
208
.10.1115/1.2929030
9.
Schulte
,
C. A.
,
1960
, “
Predicting Creep Deflections of Plastic Beams
,”
Proc. ASTM
,
60
, pp.
895
904
.
10.
Edelstein
,
W. S.
, and
Hult
,
J.
,
1983
, “
On Stress Redistribution in Structures During Creep
,”
Int. J. Solids Struct.
,
19
(
10
), pp.
915
924
.10.1016/0020-7683(83)90047-1
11.
Penny
,
R. K.
, and
Marriott
,
D. L.
,
1995
,
Design for Creep
, 2nd ed.,
Chapman and Hall
,
Padstow, Cornwall, UK
.
12.
Seshadri
,
R.
, and
Mangalaramanan
,
S.
,
1997
, “
Lower Bound Limit Loads Using Variational Concepts: The m α -Method
,”
Int. J. Pressure Vessels Piping
,
71
(
2
), pp.
93
106
.10.1016/S0308-0161(96)00071-3
13.
Mangalaramanan
,
S. P.
, and
Seshadri
,
R.
,
1997
, “
Limit Loads of Layered Beams and Layered Cylindrical Shells Using the r-Node Method
,”
Proceedings, ASME PVP-Vol. 353, Orlando, FL, pp. 201–216.
14.
Mangalaramanan
,
P.
, and
Reinhardt
,
W.
,
2001
, “
On Relating Redistributed Elastic and Inelastic Stress Fields
,”
Int. J. Pressure Vessels Piping
,
78
(
4
), pp.
283
293
.10.1016/S0308-0161(01)00041-2
15.
Ponter
,
A.
,
2009
, “
The Linear Matching Method for Limit Loads, Shakedown Limits and Ratchet Limits
,”
Limit States of Materials and Structures
, W. Dieter and P. Alan, eds.,
Springer
, Dordrecht, The Netherlands, pp.
1
21
.
16.
Adibi-Asl
,
R.
,
Fanous
,
I. F.
, and
Seshadri
,
R.
,
2006
, “
Elastic Modulus Adjustment Procedures–Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
,
83
(
2
), pp.
154
160
.10.1016/j.ijpvp.2005.11.002
17.
Mangalaramanan
,
S. P.
,
2022
, “
Bounded Elastic Moduli Multiplier Technique for Limit Loads: Part 1 - Theory
,”
ASME J. Pressure Vessel Technol.
,
144
(
5
), p.
051306
.10.1115/1.4053531
18.
Mangalaramanan
,
S. P.
,
2022
, “
Bounded Elastic Moduli Multiplier Technique for Limit Loads: Part 2 - Case Studies
,”
ASME J. Pressure Vessel Technol.
,
144
(
5
), p.
051307
.10.1115/1.4053382
19.
ASME
,
2021
,
Boiler and Pressure Vessel Code, Section 3, Rules for Construction of Nuclear Power Plant Components, NB, Class 1 Components, and Section VIII, Rules for Construction of Pressure Vessels, Division 2—Alternate Rules
,
ASME, New York
.
20.
ANSYS®
,
2022
,
Academic Research Mechanical, Version 22.1
, ANSYS®, Inc., Canonsburg, PA.
21.
Ausilio
,
E.
, and
Conte
,
E.
,
2005
, “
Influence of Groundwater on the Bearing Capacity of Shallow Foundations
,”
Can. Geotech. J.
,
42
(
2
), pp.
663
672
.10.1139/t04-084
You do not currently have access to this content.