Abstract

Autofrettage is a widely employed process for strengthening cylindrical or spherical pressure vessels. The process involves applying a uniform load to the inner wall of a vessel to cause a controlled plastic deformation, where the vessel yields starting from the inner wall up to an intermediate radius. When the load is removed, elastic recovery takes place and compressive residual stresses are induced in the vicinity of the inner wall, which strengthen the vessel against high static and pulsating loads during service. Based on the load employed, autofrettage can be of five types—hydraulic, swage, explosive, thermal, and rotational. This work analyzes a rotational autofrettage augmented by a thermal load where the load is applied by rotating the cylinder about its axis while maintaining a temperature gradient across the wall. The combined centrifugal and thermally induced stresses cause plastic deformation in the cylinder. When the cylinder is unloaded by bringing it to rest and cooling down to room temperature, compressive hoop residual stresses are introduced in the vicinity of the inner wall. A finite element method model of the proposed thermally assisted rotational autofrettage is developed for a cylinder made of AH36 mild steel in a commercial package ABAQUS®. The results indicate that the thermal load reduces the rotational speed required for autofrettage, when compared to a conventional pure rotational autofrettage. The thermal load also mitigates the tensile axial residual stresses, which are typical in a purely rotational autofrettage. A conceptual design of the experimental setup is also presented.

References

1.
Rees
,
D. W. A.
,
1987
, “
A Theory of Autofrettage With Applications to Creep and Fatigue
,”
Int. J. Pressure Vessels Piping
,
30
(
1
), pp.
57
76
.10.1016/0308-0161(87)90093-7
2.
Rees
,
D. W. A.
,
1990
, “
Autofrettage Theory and Fatigue Life of Open-Ended Cylinders
,”
J. Strain Anal. Eng. Des.
,
25
(
2
), pp.
109
121
.10.1243/03093247V252109
3.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2022
, “
Autofrettage: From Development of Guns to Strengthening of Pressure Vessels
,”
Mechanical and Industrial Engineering: Historical Aspects and Future Directions
,
J. P.
Davim
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
143
160
.
4.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.10.1115/1.4039206
5.
Jacob
,
L.
,
1907
, “
La Résistance et L'équilibre Élastique Des Tubes Frettés
,”
Meml. Artillerie Nav.
,
1
(
1907
), pp.
43
155
.
6.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.10.1007/BF02325691
7.
Mote
,
J. D.
,
Ching
,
L. K. W.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
, “
Explosive Autofrettage of Cannon Barrels
,”
Army Materials and Research Center
,
Watertown, MA
, Report No.
AMMRC CR 70–25
.https://apps.dtic.mil/sti/tr/pdf/AD0718867.pdf
8.
Dixit, U. S., Kamal, S. M., and Shufen, R., 2019, Autofrettage Processes: Technology and Modelling, CRC Press, Boca Raton, FL.
9.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.10.1016/j.matdes.2016.05.062
10.
Wen
,
E.
,
Barbero
,
E.
, and
Tygielski
,
P.
,
2002
, “
Autofrettage to Offset CTE Mismatch in Metal-Lined Composite Cryogenic Feed Lines
,”
AIAA
Paper No. 2002-1524. 10.2514/6.2002-1524
11.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.10.1115/1.4030025
12.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
144
160
.10.1177/0309324715616005
13.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.10.1007/s12206-016-0508-8
14.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Study on Enhancing the Performance of Thermally Autofrettaged Cylinder Through Shrink-Fitting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094501
.10.1115/1.4033083
15.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2017
, “
A Finite Element Method Study of Combined Hydraulic and Thermal Autofrettage Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041204
.10.1115/1.4036143
16.
Zare
,
H. R.
, and
Darijani
,
H.
,
2017
, “
Strengthening and Design of the Linear Hardening Thick-Walled Cylinders Using the New Method of Rotational Autofrettage
,”
Int. J. Mech. Sci.
,
124–125
(
Suppl. C
), pp.
1
8
.10.1016/j.ijmecsci.2017.02.015
17.
Rees
,
D. W. A.
,
1999
, “
Elastic-Plastic Stresses in Rotating Discs by Von Mises and Tresca
,”
ZAMM-J. Appl. Math. Mech.
,
79
(
4
), pp.
281
288
.10.1002/(SICI)1521-4001(199904)79:4<281::AID-ZAMM281>3.0.CO;2-V
18.
Alexandrov
,
S. E.
,
Lomakin
,
E. V.
, and
Jeng
,
Y.-R.
,
2010
, “
Effect of the Pressure Dependency of the Yield Condition on the Stress Distribution in a Rotating Disk
,”
Dokl. Phys.
,
55
(
12
), pp.
606
608
.10.1134/S1028335810120050
19.
Lomakin
,
E.
,
Alexandrov
,
S.
, and
Jeng
,
Y.-R.
,
2016
, “
Stress and Strain Fields in Rotating Elastic/Plastic Annular Discs
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
235
244
.10.1007/s00419-015-1101-9
20.
Mack
,
W.
,
1991
, “
Rotating Elastic-Plastic Tube With Free Ends
,”
Int. J. Solids Struct.
,
27
(
11
), pp.
1461
1476
.10.1016/0020-7683(91)90042-E
21.
Kamal
,
S. M.
,
Perl
,
M.
, and
Bharali
,
D.
,
2019
, “
Generalized Plane Strain Study of Rotational Autofrettage of Thick-Walled Cylinders—Part I: Theoretical Analysis
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051201
.10.1115/1.4043591
22.
Kamal
,
S. M.
, and
Perl
,
M.
,
2019
, “
Generalized Plane Strain Study of Rotational Autofrettage of Thick-Walled Cylinders—Part II: Numerical Evaluation
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051202
.10.1115/1.4044173
23.
Kamal
,
S. M.
,
2018
, “
Analysis of Residual Stress in the Rotational Autofrettage of Thick-Walled Disks
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
061402
.10.1115/1.4041339
24.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2021
, “
Effect of Length in Rotational Autofrettage of Long Cylinders With Free Ends
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
6
), pp.
2981
2994
.10.1177/09544062211034205
25.
Kamal
,
S. M.
,
Dixit
,
U. S.
,
Roy
,
A.
,
Liu
,
Q.
, and
Silberschmidt
,
V. V.
,
2017
, “
Comparison of Plane-Stress, Generalized-Plane-Strain and 3D FEM Elastic–Plastic Analyses of Thick-Walled Cylinders Subjected to Radial Thermal Gradient
,”
Int. J. Mech. Sci.
,
131–132
(
Suppl. C
), pp.
744
752
.10.1016/j.ijmecsci.2017.07.034
26.
Zhang
,
L.
,
Reutzel
,
E. W.
, and
Michaleris
,
P.
,
2004
, “
Finite Element Modeling Discretization Requirements for the Laser Forming Process
,”
Int. J. Mech. Sci.
,
46
(
4
), pp.
623
637
.10.1016/j.ijmecsci.2004.04.001
27.
Dixit
,
P. M.
, and
Dixit
,
U. S.
,
2008
,
Modeling of Metal Forming and Machining Processes: By Finite Element and Soft Computing Methods
,
Springer
,
London, UK
.
28.
Shufen
,
R.
,
Mahanta
,
N.
, and
Dixit
,
U. S.
,
2019
, “
Development of a Thermal Autofrettage Setup to Generate Compressive Residual Stresses on the Surfaces of a Cylinder
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051403
.10.1115/1.4044119
29.
Ho
,
J. M.
, and
Lee
,
M. T.
,
1996
, “
A Novel PWM Inverter Control Circuitry for Induction Heating
,”
V IEEE International Power Electronics Congress Technical Proceedings CIEP 96
, Cuernavaca, Mexico, Oct. 14–17, pp.
113
119
.10.1109/CIEP.1996.618523
30.
Dwight
,
H. B.
,
1918
, “
Skin Effect in Tubular and Flat Conductors
,”
Trans. Am. Inst. Electr. Eng.
,
37
(
2
), pp.
1379
1403
.10.1109/T-AIEE.1918.4765575
31.
Mach
,
F.
,
Karban
,
P.
, and
Doležel
,
I.
,
2012
, “
Induction Heating of Cylindrical Nonmagnetic Ingots by Rotation in Static Magnetic Field Generated by Permanent Magnets
,”
J. Comput. Appl. Math.
,
236
(
18
), pp.
4732
4744
.10.1016/j.cam.2012.02.035
32.
Melexis
,
2019
, “
Datasheet for MLX90614
,” Melexis, Ypres, Belgium, accessed Feb. 16, 2023, https://www.melexis.com/en/documents/documentation/datasheets/datasheet-mlx90614
33.
Sudianto
,
A.
,
Jamaludin
,
Z.
,
Rahman
,
A. A. A.
,
Muharrom
,
F.
, and
Novianto
,
S.
,
2020
, “
Smart Temperature Measurement System for Milling Process Application Based on MLX90614 Infrared Thermometer Sensor With Arduino
,”
J. Adv. Res. Appl. Mech.
,
72
(
1
), pp.
10
24
.10.37934/aram.72.1.1024
34.
Fraczyk
,
A.
, and
Kucharski
,
J.
,
2017
, “
Surface Temperature Control of a Rotating Cylinder Heated by Moving Inductors
,”
Appl. Therm. Eng.
,
125
, pp.
767
779
.10.1016/j.applthermaleng.2017.07.025
You do not currently have access to this content.