Abstract

The fluid conveying pipelines are often subjected to internal fluid fluctuation excitation in the hydraulic pump and external base excitation from the aircraft engine rotor. To investigate the acceleration response of the pipeline and pressure pulsation response of fluid, the vibration tests of the pipeline under base excitation, fluid fluctuation excitation, and multi-excitation are conducted. A set of test bench and test schemes of pipeline system under multi-excitation are designed. The test data are collected by a piezo-electric pressure sensor and a three-direction acceleration sensor. By analyzing the test data, the following results can be obtained: Under base excitation, the internal fluid still has a weak pressure pulsation response even without fluid fluctuation excitation. However, the pressure pulsation response remains unchanged with the increase of base excitation amplitude. Under fluid fluctuation excitation, the amplitudes of vibration responses at fluid fundamental frequency fp increase with the increase of pump pressure except at 9 MPa and 15 MPa. The natural frequency of the pipeline is close to 3fp when the pump pressure is 9 MPa and 15 MPa, respectively, and the pipeline system will have resonance. Under multi-excitation, the amplitudes of vibration responses are close to the superimposed amplitudes of two single source excitations at fb = 175 Hz and fp = 298 Hz. The vibration responses appear to beat vibration at fb = 298 Hz and fp = 297.6 Hz. The relevant test scheme and test data analysis adopted in this paper have important reference values for the in-depth study of pipeline vibration under multi-excitation and engineering practice.

References

1.
Guo
,
X. M.
,
Cao
,
Y. M.
,
Ma
,
H.
,
Xiao
,
C. L.
, and
Wen
,
B. C.
,
2022
, “
Dynamic Analysis of an L-Shaped Liquid-Filled Pipe With Interval Uncertainty
,”
Int. J. Mech. Sci.
,
217
, p.
107040
.10.1016/j.ijmecsci.2021.107040
2.
Li
,
S. J.
,
Karney
,
B. W.
, and
Liu
,
G. M.
,
2015
, “
FSI Research in Pipeline Systems - A Review of the Literature
,”
J. Fluids Struct.
,
57
, pp.
277
297
.10.1016/j.jfluidstructs.2015.06.020
3.
Liu
,
M. Y.
,
Wang
,
Z. C.
,
Zhou
,
Z. D.
,
Qu
,
Y. Z.
,
Yu
,
Z. X.
,
Wei
,
Q.
, and
Lu
,
L.
,
2018
, “
Vibration Response of Multi-Span Fluid-Conveying Pipe With Multiple Accessories Under Complex Boundary Conditions
,”
Eur. J. Mech. - A/Solids
,
72
, pp.
41
56
.10.1016/j.euromechsol.2018.03.008
4.
Zhao
,
Q. L.
, and
Sun
,
Z. L.
,
2018
, “
Flow-Induced Vibration of Curved Pipe Conveying Fluid by a New Transfer Matrix Method
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
780
790
.10.1080/19942060.2018.1527725
5.
Gao
,
P. X.
,
Yu
,
T.
,
Zhang
,
Y. L.
,
Wang
,
J.
, and
Zhai
,
J. Y.
,
2021
, “
Vibration Analysis and Control Technologies of Hydraulic Pipeline System in Aircraft: A Review
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
83
114
.10.1016/j.cja.2020.07.007
6.
Oke
,
W. A.
, and
Khulief
,
Y. A.
,
2018
, “
Effect of Internal Surface Damage on Vibration Behavior of a Composite Pipe Conveying Fluid
,”
Compos. Struct.
,
194
, pp.
104
118
.10.1016/j.compstruct.2018.03.098
7.
Ni
,
Q.
,
Tang
,
M.
,
Luo
,
Y. Y.
,
Wang
,
Y. K.
, and
Wang
,
L.
,
2014
, “
Internal-External Resonance of a Curved Pipe Conveying Fluid Resting on a Nonlinear Elastic Foundation
,”
Nonlinear Dyn.
,
76
(
1
), pp.
867
886
.10.1007/s11071-013-1175-2
8.
Zhao
,
Y. Z.
,
Liu
,
Y. S.
,
Guo
,
Q.
,
Han
,
T.
, and
Li
,
B. H.
,
2019
, “
Resonance Risk and Global Sensitivity Analysis of a Straight-Curved Combination Pipe Based on Active Learning Kriging Model
,”
Adv. Mech. Eng.
,
11
(
3
), p.
168781401983835
.10.1177/1687814019838353
9.
Chai
,
Q. D.
,
Zeng
,
J.
,
Ma
,
H.
,
Li
,
K.
, and
Han
,
Q. K.
,
2020
, “
A Dynamic Modeling Approach for Nonlinear Vibration Analysis of the L-Type Pipeline System With Clamps
,”
Chin. J. Aeronaut.
,
33
(
12
), pp.
3253
3265
.10.1016/j.cja.2020.04.007
10.
Li
,
Z. Y.
,
Wang
,
J. J.
, and
Qiu
,
M. X.
,
2016
, “
Dynamic Characteristics of Fluid-Conveying Pipes With Piecewise Linear Support
,”
Int. J. Struct. Stability Dyn.
,
16
(
06
), p.
1550025
.10.1142/S021945541550025X
11.
Zhai
,
H. B.
,
Wu
,
Z. Y.
,
Liu
,
Y. S.
, and
Yue
,
Z. F.
,
2011
, “
Dynamic Response of Pipeline Conveying Fluid to Random Excitation
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
2744
2749
.10.1016/j.nucengdes.2011.06.024
12.
Ding
,
H.
,
Ji
,
J. C.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Vibration Isolation for Fluid-Conveying Pipes Using Quasi-Zero Stiffness Characteristics
,”
Mech. Syst. Signal Process.
,
121
(
15
), pp.
675
688
.10.1016/j.ymssp.2018.11.057
13.
Wang
,
Z. M.
, and
Tan
,
S. K.
,
1998
, “
Vibration and Pressure Fluctuation in a Flexible Hydraulic Power System on an Aircraft
,”
Comput. Fluids
,
27
(
1
), pp.
1
9
.10.1016/S0045-7930(97)00033-9
14.
Gao
,
P. X.
,
Zhai
,
J. Y.
, and
Han
,
Q. K.
,
2019
, “
Dynamic Response Analysis of Aero Hydraulic Pipeline System Under Pump Fluid Pressure Fluctuation
,”
Proc. Inst. Mech. Eng.
,
233
(
5
), pp.
1585
1595
.10.1177/0954410018756697
15.
Quan
,
L. X.
,
Gao
,
J.
,
Guo
,
C. H.
,
Wu
,
S. D.
, and
Yao
,
J. C.
,
2019
, “
Dynamic Model and Response Analysis of Bionic Hydraulic Pipeline Based on Vascular Physiological Structure
,”
IEEE Access
,
7
, pp.
67564
67575
.10.1109/ACCESS.2019.2919145
16.
Tan
,
X.
, and
Ding
,
H.
,
2020
, “
Parametric Resonances of Timoshenko Pipes Conveying Pulsating High-Speed Fluids
,”
J. Sound Vib.
,
485
, p.
115594
.10.1016/j.jsv.2020.115594
17.
Wang
,
L.
,
2009
, “
A Further Study on the Non-Linear Dynamics of Simply Supported Pipes Conveying Pulsating Fluid
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
115
121
.10.1016/j.ijnonlinmec.2008.08.010
18.
Panda
,
L. N.
, and
Kar
,
R. C.
,
2008
, “
Nonlinear Dynamics of a Pipe Conveying Pulsating Fluid With Combination Principal Parametric and Internal Resonances
,”
J. Sound Vib.
,
309
(
3–5
), pp.
375
406
.10.1016/j.jsv.2007.05.023
19.
Maekawa
,
A.
,
Tsuji
,
T.
,
Noda
,
M.
,
Takahashi
,
T.
,
Kato
,
M.
, and
Fujita
,
K.
,
2017
, “
Experimental and Numerical Study on Pressure Pulsations Under Various Acoustic Boundary Conditions in Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021703
.10.1115/1.4035698
20.
Faal
,
R. T.
, and
Derakhshan
,
D.
,
2011
, “
Flow-Induced Vibration of Pipeline on Elastic Support
,”
Procedia Eng.
,
14
, pp.
2986
2993
.10.1016/j.proeng.2011.07.376
21.
Kiryukhin
,
A. V.
,
Mil'man
,
O. O.
,
Ptakhin
,
A. V.
,
Serezhkin
,
L. N.
, and
Isaev
,
S. A.
,
2019
, “
Investigation of Pressure Pulsations and Power Loads in the Compensator With the Aim of Reducing Vibration Transfer in a Pipeline With a Liquid
,”
J. Eng. Phys. Thermophys.
,
92
(
6
), pp.
1517
1523
.10.1007/s10891-019-02071-w
22.
Lee
,
S. H.
,
Ryu
,
S. M.
, and
Jeong
,
W. B.
,
2012
, “
Vibration Analysis of Compressor Piping System With Fluid Pulsation
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3903
3909
.10.1007/s12206-012-0891-8
23.
Adamkowski
,
A.
,
Henclik
,
S.
, and
Lew
,
M.
,
2010
, “
Experimental and Numerical Results of the Influence of Dynamic Poisson Effect on Transient Pipe Flow Parameters
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
, p.
012041
.10.1088/1755-1315/12/1/012041
24.
Budny
,
D. D.
,
Hatfield
,
F. J.
, and
Wiggert
,
D. C.
,
1990
, “
An Experimental Study on the Influence of Structural Damping on Internal Fluid Pressure During a Transient Flow
,”
ASME J. Pressure Vessel Technol.
,
112
(
3
), pp.
284
290
.10.1115/1.2928627
25.
Edge
,
K. A.
,
Boston
,
O. P.
,
Xiao
,
S.
,
Longvill
,
M. J.
, and
Burrows
,
C. R.
,
1997
, “
Pressure Pulsations in Reciprocating Pump Piping Systems Part 2: Experimental Investigations and Model Validation
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
211
(
3
), pp.
239
250
.10.1243/0959651971539777
26.
Zi
,
B.
,
Jiang
,
F.
,
Wu
,
Y. W.
,
Bai
,
H. B.
,
Tang
,
Y.
, and
Lu
,
C. H.
,
2021
, “
Analysis and Experimental Research on Vibration Reduction in Ship High-Temperature Pipeline Based on Long Coated Damping Structure
,”
Mar. Sci. Eng.
,
9
(
8
), p.
838
.10.3390/jmse9080838
27.
Ouyang
,
X. P.
,
Gao
,
F.
,
Yang
,
H. Y.
, and
Wang
,
H. X.
,
2012
, “
Modal Analysis of the Aircraft Hydraulic-System Pipeline
,”
J. Aircr.
,
49
(
4
), pp.
1168
1174
.10.2514/1.C031660
28.
Ouyang
,
X. P.
,
Gao
,
F.
,
Yang
,
H. Y.
, and
Wang
,
H. X.
,
2012
, “
Two-Dimensional Stress Analysis of the Aircraft Hydraulic System Pipeline
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
226
(
5
), pp.
532
539
.10.1177/0954410011413011
29.
Qu
,
W.
,
Zhang
,
H. L.
,
Li
,
W.
,
Sun
,
W. Q.
,
Zhao
,
L. N.
, and
Ning
,
H. H.
,
2018
, “
Influence of Support Stiffness on Dynamic Characteristics of the Hydraulic Pipe Subjected to Basic Vibration
,”
Shock Vib.
,
2018
, pp.
1
8
.10.1155/2018/4035725
30.
Zhang
,
X. T.
,
Liu
,
W.
,
Zhang
,
Y. M.
, and
Zhao
,
Y. J.
,
2021
, “
Experimental Investigation and Optimization Design of Multi-Support Pipeline System
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
15
.10.1186/s10033-020-00530-7
31.
Navada
,
B. R.
, and
Santhosh
,
K. V.
,
2016
, “
Estimation of Liquid Temperature From Analysis of Liquid Level Sensor Characteristics
,”
Int. J. Control Theory Appl.
,
9
(
39
), pp.
269
278
.http://eprints.manipal.edu/147913/
32.
Maekawa
,
A.
,
Takahashi
,
T.
,
Tsuji
,
T.
, and
Noda
,
M.
,
2015
, “
Experimental Validation of Non-Contacting Measurement Method Using LED-Optical Displacement Sensors for Vibration Stress of Small-Bore Piping
,”
Measurement
,
71
, pp.
1
10
.10.1016/j.measurement.2015.04.008
33.
Maekawa
,
A.
,
Noda
,
M.
, and
Shintani
,
M.
,
2016
, “
Experimental Study on a Noncontact Method Using Laser Displacement Sensors to Measure Vibration Stress in Piping Systems
,”
Measurement
,
79
, pp.
101
111
.10.1016/j.measurement.2015.10.012
34.
Maekawa
,
A.
,
Noda
,
M.
,
Shintani
,
M.
, and
Suzuki
,
M.
,
2022
, “
Influential Factors for Noncontact Measurement Method of Vibration Stress Using Multiple Laser Displacement Sensors
,”
Opt. Lasers Eng.
,
151
, p.
106942
.10.1016/j.optlaseng.2021.106942
35.
Wang
,
Q.
,
Huang
,
J.
,
Liu
,
Q.
, and
Zhou
,
Z. D.
,
2016
, “
Dynamic Strain Measurement of Hydraulic System Pipeline Using Fibre Bragg Grating Sensors
,”
Adv. Mech. Eng.
,
8
(
4
), p.
168781401664506
.10.1177/1687814016645069
36.
HUang
,
J.
,
Pham
,
D. T.
,
Ji
,
C. Q.
,
Wang
,
Z. C.
, and
Zhou
,
Z. D.
,
2019
, “
Multi-Parameter Dynamical Measuring System Using Fibre Bragg Grating Sensors for Industrial Hydraulic Piping
,”
Measurement
,
134
, pp.
226
235
.10.1016/j.measurement.2018.10.069
37.
Gao
,
P. X.
,
Qu
,
H. Q.
,
Zhang
,
Y. L.
,
Yu
,
T.
, and
Zhai
,
J. Y.
,
2020
, “
Experimental and Numerical Vibration Analysis of Hydraulic Pipeline System Under Multiexcitations
,”
Shock Vib.
,
2020
, pp.
1
13
.10.1155/2020/3598374
38.
Simão
,
M.
,
Mora-Rodriguez
,
J.
, and
Ramos
,
H. M.
,
2015
, “
Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models
,”
Water
,
7
(
11
), pp.
6321
6350
.10.3390/w7116321
39.
Qing
,
M.
,
Zhang
,
J. H.
,
Luo
,
Y. S.
,
Wang
,
H. J.
, and
Duan
,
Q.
,
2006
, “
Experimental Studies of Orifice-Induced Wall Pressure Fluctuations and Pipe Vibration
,”
Int. J. Pressure Vessels Piping
,
83
(
7
), pp.
505
511
.10.1016/j.ijpvp.2006.03.010
40.
Yang
,
Y. B.
,
Qin
,
Z. H.
, and
Zhang
,
Y. H.
,
2023
, “
Random Response Analysis of Hydraulic Pipeline Systems Under Fluid Fluctuation and Base Motion
,”
Mech. Syst. Signal Process.
,
186
, p.
109905
.10.1016/j.ymssp.2022.109905
You do not currently have access to this content.