Abstract

This study investigates the fracture behavior of single-edge notched tension (SENT) specimens made from API X52 vintage pipeline steel by comparing the extended finite element method (XFEM) and the traditional finite element method (FEM). Both methods are implemented in abaqus finite element software to simulate specimens with varying notch length-to-specimen-width ratios, whose fracture properties have been experimentally determined. The analysis focuses on plotting force versus global displacement, crack tip opening displacement (CTOD), and crack mouth opening displacement (CMOD) for each method. These simulation results are then compared with experimental data. A mean absolute percentage error (MAPE) calculation quantifies the level of agreement between the model and test results. The findings demonstrate that both methods can replicate the experimental force–crack opening displacement (COD) and force–displacement curves. However, XFEM offers distinct advantages, including the elimination of the need for mesh refinement, easier numerical convergence, and accurate visualization of the crack propagation path.

References

1.
Hosseini
,
A.
,
Cronin
,
D.
, and
Plumtree
,
A.
,
2013
, “
Crack in Corrosion Defect Assessment in Transmission Pipelines
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p.
021701
.10.1115/1.4007644
2.
Shahzamanian
,
M. M.
,
Lin
,
M.
,
Kainat
,
M.
,
Yoosef-Ghodsi
,
N.
, and
Adeeb
,
S.
,
2021
, “
Systematic Literature Review of the Application of Extended Finite Element Method in Failure Prediction of Pipelines
,”
J. Pipeline Sci. Eng.
,
1
(
2
), pp.
241
251
.10.1016/j.jpse.2021.02.003
3.
Ahmed
,
A. U.
,
2011
, “
Failure Criteria for Tearing of Telescoping Wrinkles
,”
Ph.D. dissertation
,
University of Alberta, Edmonton, AB, Canada
.https://era.library.ualberta.ca/items/c4cdcee8-d570-4660-8d0d-8ccd54ae84ff
4.
Mondal
,
B. C.
,
2018
, “
Remaining Strength Assessment of Deteriorating Energy Pipelines
,”
Ph.D. dissertation
,
Memorial University of Newfoundland
, St. John’s,
NL, Canada
.https://research.library.mun.ca/13618/
5.
Wang
,
E.
,
Zhou
,
W.
,
Shen
,
G.
, and
Duan
,
D.
,
2012
, “
An Experimental Study on J(CTOD)-R Curves of Single Edge Tension Specimens for X80 Steel
,”
ASME
Paper No. IPC2012-90323.10.1115/IPC2012-90323
6.
Najari
,
O. E.
,
2024
, “
Fracture Behavior and Simulation of X52 Steel Pipe SENT Specimens
,”
M.Sc. thesis
,
University of Alberta, Edmonton, AB, Canada
.https://era.library.ualberta.ca/items/ab4e5995-3a78-4af6-8512-fda48aa759e8/view/272daf8c-6f08-4896-9ec9-c0bd300cb78d/Najari_Omid_E_202312_MSc.pdf
7.
Pussegoda
,
L. N.
,
Tiku
,
S.
,
Park
,
D.
,
Tyson
,
W. R.
, and
Gianetto
,
J.
,
2012
, “
J-Resistance Results From Multi-Specimen and Single-Specimen Surface Notched SEN(T) geometry
,”
ASME
Paper No. IPC2012-90565.10.1115/IPC2012-90565
8.
Kong
,
L.
,
Zhou
,
X.
,
Chen
,
L.
,
Huang
,
K.
, and
Chen
,
J.
,
2019
, “
Experimental Study on the Fracture Toughness of Welded Joints of API X90 High-Grade Pipeline Steels Using Single-Edge-Notched Tension Specimens
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
1033
1041
.10.1007/s13369-018-3396-7
9.
Weeks
,
T. S.
, and
Read
,
D. T.
,
2015
, “
Comparison of J-Integral From Single Specimen SE(T) Tests on API-5 L X100 Line Pipe Steel
,”
Proceedings of the 25th International Offshore and Polar Engineering Conference
, ISOPE 2015,
Waikoloa, HI
, June 21–26.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=918066
10.
Zhu
,
X.
, and
McGaughy
,
T.
,
2014
, “
A Review of Fracture Toughness Testing and Evaluation Using SENT Specimens
,”
ASME
Paper No. IPC2014-33718.10.1115/IPC2014-33718
11.
Sarzosa
,
D. F. B.
,
Savioli
,
R.
,
Ruggieri
,
C.
, and
Garmbis
,
A. G.
,
2020
, “
Comparison of Fracture Toughness Curves Obtained by Single and Multi-Specimen Methodologies for a Pipe Having an Undermatched Girth Weld
,”
ASME
Paper No. PVP2020-21546.10.1115/PVP2020-21546
12.
Lin
,
M.
,
Li
,
Y.
,
Cheng
,
J. J. R.
,
Koduru
,
S.
,
Kainat
,
M.
,
Zhang
,
X.
, and
Adeeb
,
S.
,
2022
, “
Novel XFEM Variable Strain Damage Model for Predicting Fracture in Small-Scale SENT and Full-Scale Pipe Tests
,”
Eng. Fract. Mech.
,
271
, p.
108628
.10.1016/j.engfracmech.2022.108628
13.
Comi
,
C.
, and
Perego
,
U.
,
2004
, “
Criteria for Mesh Refinement in Nonlocal Damage Finite Element Analyses
,”
Eur. J. Mech. A/Solids
,
23
(
4
), pp.
615
632
.10.1016/j.euromechsol.2004.03.006
14.
Kainat
,
M.
,
Lin
,
M.
,
Cheng
,
J. J. R.
,
Martens
,
M.
, and
Adeeb
,
S.
,
2016
, “
Effects of the Initial Geometric Imperfections on the Buckling Behavior of High-Strength UOE Manufactured Steel Pipes
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051206
.10.1115/1.4032990
15.
Roy
,
S.
,
Grigory
,
S.
,
Smith
,
M.
,
Kanninen
,
M. F.
, and
Anderson
,
M.
,
1997
, “
Numerical Simulations of Full-Scale Corroded Pipe Tests With Combined Loading
,”
ASME J. Pressure Vessel Technol.
,
119
(
4
), pp.
457
466
.10.1115/1.2842330
16.
Arumugam
,
T.
,
Karuppanan
,
S.
, and
Ovinis
,
M.
,
2020
, “
Finite Element Analyses of Corroded Pipeline With Single Defect Subjected to Internal Pressure and Axial Compressive Stress
,”
Mar. Struct.
,
72
, p.
102746
.10.1016/j.marstruc.2020.102746
17.
Woo
,
J.
,
Kainat
,
M.
,
Okoloekwe
,
C.
,
Hassanien
,
S.
, and
Adeeb
,
S.
,
2019
, “
Integrity Analysis of Dented Pipelines Using Artificial Neural Networks
,”
Pipeline Sci. Technol.
,
3
(
2
), pp.
92
104
.10.28999/2514-541X-2019-3-2-92-104
18.
Chiesa
,
M.
,
Nyhus
,
B.
,
Skallerud
,
B.
, and
Thaulow
,
C.
,
2001
, “
Efficient Fracture Assessment of Pipelines. A Constraint-Corrected SENT Specimen Approach
,”
Eng. Fract. Mech.
,
68
(
5
), pp.
527
547
.10.1016/S0013-7944(00)00129-6
19.
Soret
,
C.
,
Madi
,
Y.
,
Besson
,
J.
, and
Gaffard
,
V.
,
2015
, “
Use of the SENT Specimen in Pipeline Design
,”
20th JTM—EPRG European Pipeline Research Group
,
France
,
Paris
, May 3–8, p.
34
.https://minesparis-psl.hal.science/hal-01183303/file/Soret-Madi-Besson%2020th%20JTM%202015%2034%20p.pdf
20.
Qiang
,
B.
, and
Wang
,
X.
,
2019
, “
Ductile Crack Growth Behaviors at Different Locations of a Weld Joint for an X80 Pipeline Steel: A Numerical Investigation Using GTN Models
,”
Eng. Fract. Mech.
,
213
, pp.
264
279
.10.1016/j.engfracmech.2019.04.009
21.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
22.
Melenk
,
J. M.
, and
Babuska
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,” Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland, Report No.
1996-01
.10.1016/S0045-7825(96)01087-0
23.
Khoei
,
A. R.
,
2014
,
Extended Finite Element Method: Theory and Applications
,
Wiley
,
New York
.
24.
Rege
,
K.
, and
Lemu
,
H.
,
2017
, “
A Review of Fatigue Crack Propagation Modelling Techniques Using FEM and XFEM
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
276
(
1
), p.
012027
.10.1088/1757-899X/276/1/012027
25.
Agbo
,
S.
,
Lin
,
M.
,
Ameli
,
I.
,
Imanpour
,
A.
,
Duan
,
D.
,
Cheng
,
J. J. R.
, and
Adeeb
,
S.
,
2019
, “
Evaluation of the Effect of Internal Pressure and Flaw Size on the Tensile Strain Capacity of X42 Vintage Pipeline Using Damage Plasticity Model in Extended Finite Element Method (XFEM)
,”
ASME
Paper No. PVP2019-94005.10.1115/PVP2019-94005
26.
Agbo
,
S.
,
Imanpour
,
A.
,
Li
,
Y.
,
Kainat
,
M.
,
Yoosef-Ghodsi
,
N.
,
Cheng
,
J. J. R.
, and
Adeeb
,
S.
,
2020
, “
Development of a Tensile Strain Capacity Predictive Model for American Petroleum Institute 5 L X42 Welded Vintage Pipelines
,”
ASME J. Pressure Vessel Technol.
,
142
(
6
), p.
061506
.10.1115/1.4047561
27.
Zhang
,
X.
,
Okodi
,
A.
,
Tan
,
L.
,
Leung
,
J.
, and
Adeeb
,
S.
,
2020
, “
Failure Pressure Prediction of Crack in Corrosion Defects in 2D by Using XFEM
,”
ASME
Paper No. PVP2020-21046.10.1115/PVP2020-21046
28.
Okodi
,
A.
,
Lin
,
M.
,
Yoosef-Ghodsi
,
N.
,
Kainat
,
M.
,
Hassanien
,
S.
, and
Adeeb
,
S.
,
2020
, “
Crack Propagation and Burst Pressure of Longitudinally Cracked Pipelines Using Extended Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
184
(
5
), p.
104115
.10.1016/j.ijpvp.2020.104115
29.
Zhang
,
B.
,
Ye
,
C.
,
Liang
,
B.
,
Zhang
,
Z.
, and
Zhi
,
Y.
,
2014
, “
Ductile Failure Analysis and Crack Behavior of X65 Buried Pipes Using Extended Finite Element Method
,”
Eng. Failure Anal.
,
45
, pp.
26
40
.10.1016/j.engfailanal.2014.06.009
30.
Talemi
,
R. H.
,
2016
, “
Numerical Simulation of Dynamic Brittle Fracture of Pipeline Steel Subjected to DWTT Using XFEM-Based Cohesive Segment Technique
,”
Fratt. Integrità Strutturale
,
10
(
36
), pp.
151
159
.10.3221/IGF-ESIS.36.15
31.
Pereira
,
L. S.
,
Moço
,
R. F.
, and
Donato
,
G. H. B.
,
2018
, “
Ductile Fracture of Advanced Pipeline Steels: Study of Stress States and Energies in Dynamic Impact Specimens—CVN and DWTT
,”
Procedia Struct. Integr.
,
13
, pp.
1985
1992
.10.1016/j.prostr.2018.12.219
32.
Lin
,
M.
,
Li
,
Y.
,
Salem
,
M.
,
Cheng
,
J. J.
,
Adeeb
,
S.
, and
Kainat
,
M.
,
2020
, “
A Parametric Study of Variable Crack Initiation Criterion in XFEM on Pipeline Steel
,”
ASME
Paper No. PVP2020-21664.10.1115/PVP2020-21664
33.
Lin
,
M.
,
Agbo
,
S.
,
Duan
,
D.-M.
,
Cheng
,
J. J. R.
, and
Adeeb
,
S.
,
2020
, “
Simulation of Crack Propagation in API 5 L X52 Pressurized Pipes Using XFEM-Based Cohesive Segment Approach
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
2
), p.
04020009
.10.1061/(ASCE)PS.1949-1204.0000444
34.
Elyasi
,
N.
,
Shahzamanian
,
M.
,
Lin
,
M.
,
Westover
,
L.
,
Li
,
Y.
,
Kainat
,
M.
,
Yoosef-Ghodsi
,
N.
, and
Adeeb
,
S.
,
2021
, “
Prediction of Tensile Strain Capacity for X52 Steel Pipeline Materials Using the Extended Finite Element Method
,”
Appl. Mech.
,
2
(
2
), pp.
209
225
.10.3390/applmech2020013
35.
Liu
,
B.
,
Liu
,
X. J.
, and
Zhang
,
H.
,
2009
, “
Strain-Based Design Criteria of Pipelines
,”
J. Loss Prev. Process Ind.
,
22
(
6
), pp.
884
888
.10.1016/j.jlp.2009.07.010
36.
Ameli
,
I.
,
Asgarian
,
B.
,
Lin
,
M.
,
Agbo
,
S.
,
Cheng
,
R.
,
Duan
,
D.
, and
Adeeb
,
S.
,
2019
, “
Estimation of the CTOD-Crack Growth Curves in SENT Specimens Using the Extended Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
169
, pp.
16
25
.10.1016/j.ijpvp.2018.11.008
37.
Wang
,
J.
,
Wang
,
H.
,
Lin
,
N.
,
Ma
,
H.
, and
Wang
,
J.
,
2018
, “
Comparison of Two Ductile Crack Propagation Models of GTN and CZM for Pipe Steel Fracture
,”
ASME
Paper No. PVP2018-84689.10.1115/PVP2018-84689
38.
Kofiani
,
K.
,
Nonn
,
A.
, and
Wierzbicki
,
T.
,
2013
, “
New Calibration Method for High and Low Triaxiality and Validation on SENT Specimens of API X70
,”
Int. J. Pressure Vessels Piping
,
111–112
(
1
), pp.
187
201
.10.1016/j.ijpvp.2013.07.004
39.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
636
.10.1016/0021-8928(59)90157-1
40.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
41.
Javidrad
,
F.
, and
Mashayekhy
,
M.
,
2014
, “
A Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
,”
J. Solid Mech.
,
6
(
4
), pp.
378
388
.https://www.researchgate.net/publication/285996796_A_cohesive_zone_model_for_crack_growth_simulation_in_AISI_304_steel
42.
Dassault Systèmes
,
2017
, “
Abaqus Documentation
,”
Dassault Systèmes
, Waltham, MA.
43.
Górszczyk
,
J.
,
Malicki
,
K.
, and
Zych
,
T.
,
2019
, “
Application of Digital Image Correlation (DIC) Method for Road Material Testing
,”
Materials
,
12
(
15
), p.
2349
.10.3390/ma12152349
44.
Liu
,
X.
,
Zhang
,
H.
,
Xia
,
M.
,
Han
,
Y.
, and
Ji
,
Y.
,
2017
, “
Numerical and Experimental Study on Critical Crack Tip Opening Displacement of X80 Pipeline Steel
,”
Mechanics
,
23
(
2
), pp.
204
208
.10.5755/j01.mech.23.2.14535
45.
Pascuzzo
,
A.
,
Greco
,
F.
,
Leonetti
,
L.
,
Lonetti
,
P.
,
Pranno
,
A.
, and
Ronchei
,
C.
,
2022
, “
Investigation of Mesh Dependency Issues in the Simulation of Crack Propagation in Quasi-Brittle Materials by Using a Diffuse Interface Modeling Approach
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
3
), pp.
801
820
.10.1111/ffe.13635
46.
Ljustina
,
G.
,
Fagerström
,
M.
, and
Larsson
,
R.
,
2014
, “
Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses
,”
Sci. World J.
,
2014
(
1
), pp.
1
8
.10.1155/2014/260571
47.
Liu
,
P. F.
,
Zhang
,
B. J.
, and
Zheng
,
J. Y.
,
2012
, “
Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM
,”
J. Failure Anal. Prev.
,
12
(
6
), pp.
707
718
.10.1007/s11668-012-9623-8
48.
Azimi
,
M.
,
Mirjavadi
,
S. S.
, and
Asli
,
S. A.
,
2016
, “
Investigation of Mesh Sensitivity Influence to Determine Crack Characteristic by Finite Element Methods
,”
J. Failure Anal. Prev.
,
16
(
3
), pp.
506
512
.10.1007/s11668-016-0117-y
You do not currently have access to this content.