This paper provides a methodology for the structural reliability analysis of marine vessels based on failure modes of their hull girders, stiffened panels including buckling, fatigue, and fracture and corresponding life predictions at the component and system levels. Factors affecting structural integrity such as operational environment and structural response entail uncertainties requiring the use of probabilistic methods to estimate reliabilities associated with various alternatives being considered for design, maintenance, and repair. Variability of corrosion experienced on marine vessels is a specific example of factors affecting structural integrity requiring probabilistic methods. The Structural Life Assessment of Ship Hulls (SLASH) methodology developed in this paper produces time-dependent reliability functions for hull girders, stiffened panels, fatigue details, and fracture at the component and system levels. The methodology was implemented as a web-enabled, cloud-computing-based tool with a database for managing vessels analyzed with associated stations, components, details, and results, and users. Innovative numerical and simulation methods were developed for reliability predictions with the use of conditional expectation. Examples are provided to illustrate the computations.

References

1.
Paik
,
J. K.
,
Kim
,
S. K.
, and
Lee
,
S. K.
,
1998
, “
Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Bulk Carriers
,”
Ocean Eng.
,
25
(
10
), pp.
837
860
.10.1016/S0029-8018(97)10009-9
2.
Assakkaf
,
I.
,
Ayyub
,
B. M.
,
Hess
,
P.
, and
Atua
,
K.
,
2002
, “
Reliability-Based Load and Resistance Factor Design (LRFD) Guidelines for Stiffened Panels and Grillages of Ship Structures
,”
Naval Eng. J., ASNE
,
114
(
2
), pp.
89
111
.
3.
Ayyub
,
B. M.
,
Assakkaf
,
I.
,
Kihl
,
D. P.
, and
Sieve
,
M. W.
,
2002
, “
Reliability-Based Design Guidelines for Fatigue of Ship Structures
,”
Naval Eng. J., ASNE
,
114
(
2
), pp.
113
138
.
4.
de Souza
,
G. F. M.
, and
Ayyub
,
B. M.
,
2000
, “
Probabilistic Fatigue Life Prediction for Ship Structures Using Fracture Mechanics
,”
Naval Eng. J., ASNE
,
112
(
4
), pp.
375
397
.
5.
Ayyub
,
B. M.
,
2010
,
Structural Life Assessment of Ship Hulls (SLASH), Report Prepared for U.S. Coast Guard Naval Architecture Branch
,
Baltimore, MD
.
6.
Orisamolu
,
I. R.
,
Brennan
,
D. B.
, and
Akpan
,
U. O.
,
1999
, “
Probabilistic Modeling of Corroded Ship Structural Panels
,”
Presented at the 8th CF/CRAD Meeting on Naval Application of Materials Technology and Inter-Naval Corrosion Conference
,
Halifax, Nova Scotia, Canada
.
7.
Akpan
,
U. O.
,
Koko
,
T. S.
,
Ayyub
,
B. M.
, and
Dunbar
,
T. E.
,
2002
, “
Risk Assessment of Aging Ship Hull Structures in the Presence of Corrosion and Fatigue
,”
Marine Struct.
,
15
(
3
), pp.
211
232
.10.1016/S0951-8339(01)00030-2
8.
Herzog
,
A. M.
,
1987
, “
Simplified Design of Unstiffened and Stiffened Plates
,”
J. Struct. Eng., ASCE
,
113
(
10
), pp.
2111
2124
.
9.
Paik
,
J. K.
, and
Lee
,
J. M.
,
1996
, “
An Empirical Formulation for Predicting the Ultimate Compression Strength of Plates and Stiffened Plates
,”
Trans. Soc. Naval Architects of Korea
,
33
(
3
), pp.
8
21
(in Korean).
10.
Paik
,
J. K.
, and
Thayamballi
,
A. K.
,
2002
,
Ultimate Limit State Design of Steel-plated Structures
,
John Wiley & Sons
,
Chichester, UK
.
11.
Assakkaf
,
I.
, and
Ayyub
,
B. M.
,
2004
, “
Comparative and Uncertainty Assessment of Design Criteria for Stiffened Panels
,”
J. Ship Research, Soc. Naval Architects Marine Eng.
,
48
(
3
), pp.
231
247
.
12.
MAESTRO Version 8.9
,
Optimum Structural Design, Inc.
,
DRS C3 Advanced Technology Center
.
13.
Hess
,
P. E.
, III
,
Bruchman
,
D. D.
,
Assakkaf
,
I. A.
, and
Ayyub
,
B. M.
,
2002
, “
Uncertainties in Material Strength, Geometric and Load Variables
,”
Naval Eng. J., ASNE
,
114
(
2
), pp.
139
165
.
14.
Michaelson
,
R.
,
2000
,
User’s Guide for SPECTRA: Version 8.3
, , March 2000.
15.
Sikora
,
J. P.
,
Michaelson
,
R.
, and
Ayyub
,
B. M.
,
2002
, “
Assessment of Cumulative Lifetime Seaway Loads for Ships
,”
Naval Eng. J., ASNE
,
114
(
2
), pp.
167
180
.
16.
Ayyub
,
B. M.
, and
McCuen
,
R. H.
,
2011
,
Probability, Statistics and Reliability for Engineers and Scientists
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
17.
Ayyub
,
B. M.
,
2003
,
Risk Analysis in Engineering and Economics
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
18.
Ellingwood
,
B. R.
, and
Mori
,
Y.
,
1993
, “
Probabilistic Methods for Condition Assessment and Life Prediction of Concrete Structures in Nuclear Plants
,”
Nuclear Eng. and Design
,
142
, pp.
155
166
.10.1016/0029-5493(93)90199-J
19.
White
,
G. J.
, and
Ayyub
,
B. M.
,
1987
, “
Reliability-Based Fatigue Design for Ship Structures
,”
Naval Eng. J., ASNE
,
99
(
3
), pp.
135
149
.
20.
Sieve
,
M. W.
,
Kihl
,
D. P.
, and
Ayyub
,
B. M.
,
2000
,
Fatigue Design Guidance for Surface Ships
,
CARDEROCKDIV-U-SSM-65- / Sep. 2000, Naval Surface Warfare Center, Carderock Division, NAVSEA, U. S. Navy
,
64
pp.
21.
Stambaugh
,
K. A.
,
Leeson
,
D. H.
,
Lawrence
,
F.
,
Hou
,
C.-Y.
, and
Banas
,
G.
,
1992
, “
Reduction of S-N Curves for Ship Structural Details
,” Report SSC 369,
Ship Structure Committee, U.S. Coast Guard
, Washington, D.C.
22.
Stambaugh
,
K. A.
,
Lawrence
,
F.
, and
Dimitriakis
,
S.
,
1994
, “
Improved Ship Hull Structural Details Relative to Fatigue
,” Report SSC 379,
Ship Structure Committee, U.S. Coast Guard
, Washington, D.C.
23.
Ayyub
,
B. M.
, and
McGill
,
W. L.
,
2007
,
Fatigue Life Assessment of Ship Structures (FLASH)
,
U. S. Coast Guard Naval Architecture Branch, Engineering Logistic Center
,
2410 Hawkins Point Road, M/S 25, Baltimore, MD
.
24.
Fuchs
,
H. O.
, and
Stephens
,
R. I.
,
1980
.
Metal Fatigue in Engineering
,
John Wiley & Sons
,
New York
.
25.
Ayyub
,
B. M.
, and
de Souza
,
G. F. M.
,
2012
, “
Structural Detail Assessment of Ship Hulls (SLASH): Fracture Mechanics
,”
Report prepared for U.S. Coast Guard Naval Architecture Branch
, Baltimore, MD.
26.
Lassen
,
T.
, and
Sorensen
,
J. D.
,
2002
, “
A Probabilistic Damage Tolerant Concept for Welded Joints. Part 1: Data Base and Stochastic Modeling
,”
Marine Structure
,
15
, pp.
599
613
.10.1016/S0951-8339(02)00020-5
You do not currently have access to this content.