Abstract

Sketches can be categorized as personal, shared, persuasive, and handover sketches. Depending on each category, their level of ambiguity also varies. The applications of sketches include conceptual design, eliciting user preferences, shape retrieval, and sketch-based modeling (SBM). There is a need for quantification of uncertainty in sketches in mapping of sketches to three-dimensional (3D) models in sketch-based modeling, in eliciting user preferences, and in tuning the level of uncertainty in sketches at the conceptual design stage. This paper investigates the role of probability of importance in quantifying the level of uncertainty in sketches by raising the following three research questions: How are the features in a sketch ranked? What is the probability of importance of features in a sketch? What is the level of uncertainty in a sketch? This paper presents an improved framework for uncertainty quantification in sketches. The framework is capable of identifying and ranking the features in the sketch, determining their probability of importance, and finally quantifying the level of uncertainty in the sketch. Ranking the features of a sketch is performed by a hierarchical approach, whereas probability of importance is determined by assessing the probability of likeliness using a shape matching approach and a probability transformation. Quantification of uncertainty is accomplished by using the principle of normalization of entropy. A case study of a bicycle sketch is used to demonstrate that the framework eliminates the need of expert input in assessment of uncertainty in sketches and, hence, can be used by design practitioners with limited experience.

References

1.
Ferguson
,
E. S.
,
1992
,
Engineering and the Mind’s Eye
,
MIT Press
,
Cambridge, MA
.
2.
Eckert
,
C.
,
Blackwell
,
A. F.
,
Stacey
,
M.
,
Earl
,
C.
, and
Church
,
L.
,
2012
, “
Sketching Across Design Domains: Roles and Formalities
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
26
(
3
), pp.
245
266
.
3.
Pei
,
E.
,
Campbell
,
I. R.
, and
Evans
,
M. A.
,
2011
, “
A Taxonomic Classification of Visual Design Representations Used by Industrial Designers and Engineering Designers
,”
Des. J.
,
14
(
1
), pp.
61
91
.
4.
Yang
,
M. C.
, and
Cham
,
J. G.
,
2007
, “
An Analysis of Sketching Skill and Its Role in Early Stage Engineering Design
,”
ASME J. Mech. Des.
,
129
(
5
), p.
476
.
5.
Westmoreland
,
S.
,
Ruocco
,
A.
, and
Schmidt
,
L.
,
2011
, “
Analysis of Capstone Design Reports: Visual Representations
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051010
.
6.
Faas
,
D.
,
Bao
,
Q.
, and
Yang
,
M. C.
,
2014
, “
Preliminary Sketching and Prototyping: Comparisons in Exploratory Design-and-Build Activities
,”
ASME
Paper No. DETC2014-34928.
7.
Menezes
,
A.
, and
Lawson
,
B.
,
2006
, “
How Designers Perceive Sketches
,”
Des. Stud.
,
27
(
5
), pp.
571
585
.
8.
Atilola
,
O.
,
Tomko
,
M.
, and
Linsey
,
J. S.
,
2016
, “
The Effects of Representation on Idea Generation and Design Fixation: A Study Comparing Sketches and Function Trees
,”
Des. Stud.
,
42
, pp.
110
136
.
9.
Tseng
,
W. S. W.
, and
Ball
,
L. J.
,
2011
, “
How Uncertainty Helps Sketch Interpretation in a Design Task
,”
Design Creativity 2010
,
T.
Taura
and
Y.
Nagai
, eds.,
Springer
,
London
, pp.
257
264
.
10.
Häggman
,
A.
,
Tsai
,
G.
,
Elsen
,
C.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2015
, “
Connections Between the Design Tool, Design Attributes, and User Preferences in Early Stage Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
71408
.
11.
Macomber
,
B.
, and
Yang
,
M.
,
2011
, “
The Role of Sketch Finish and Style in User Responses to Early
,”
ASME
Paper No. DETC2011-48714.
12.
Reid
,
T.
,
MacDonald
,
E.
, and
Du
,
P.
,
2012
, “
Impact of Product Design Representation on Customer Judgment With Associated Eye Gaze Patterns
,”
ASME
Paper No. DETC2012-70734.
13.
Johnson
,
G.
,
Gross
,
M. D.
,
Hong
,
J.
,
Johnson
,
G.
,
Gross
,
M. D.
,
Hong
,
J.
, and
Do
,
E. Y.
,
2008
, “
Computational Support for Sketching in Design: A Review
,”
Found. Trends Hum.-Comput. Interact.
,
2
(
1
), pp.
1
93
.
14.
Qi
,
Y.
,
Guo
,
J.
,
Song
,
Y.
,
Xiang
,
T.
,
Zhang
,
H.
, and
Tan
,
Z.
,
2015
, “
Im2Sketch: Sketch Generation by Unconflicted Perceptual Grouping
,”
Neurocomputing
,
165
, pp.
338
349
.
15.
Li
,
B.
,
Lu
,
Y.
,
Godil
,
A.
,
Schreck
,
T.
,
Bustos
,
B.
,
Ferreira
,
A.
,
Furuya
,
T.
,
Fonseca
,
M. J.
,
Johan
,
H.
,
Matsuda
,
T.
,
Ohbuchi
,
R.
,
Pascoal
,
P. B.
, and
Saavedra
,
J. M.
,
2014
, “
A Comparison of Methods for Sketch-Based 3D Shape Retrieval
,”
Comput. Vision Image Understanding
,
119
, pp.
57
80
.
16.
Yang
,
M.
,
Kpalma
,
K.
,
Ronsin
,
J.
,
Yang
,
M.
,
Kpalma
,
K.
,
Ronsin
,
J.
,
Survey
,
A.
, and
Feature
,
S.
,
2008
, “
A Survey of Shape Feature Extraction Techniques
,”
Pattern Recognition Techniques, Technology and Applications
,
P.
Peng-Yeng
, ed.,
I-TECH,
Vienna, Austria
, pp.
43
90
.
17.
Eitz
,
M.
,
Richter
,
R.
,
Boubekeur
,
T.
,
Hildebrand
,
K.
, and
Alexa
,
M.
,
2012
, “
Sketch-Based Shape Retrieval
,”
ACM Trans. Graphics
,
31
(
4
), pp.
1
10
.
18.
Entem
,
E.
,
Barthe
,
L.
,
Cani
,
M.
,
Cordier
,
F.
, and
van de Panne
,
M.
,
2015
, “
Modeling 3D Animals From a Side-View Sketch
,”
Comput. Graphics
,
46
, pp.
221
230
.
19.
Xie
,
X.
,
Xu
,
K.
,
Mitra
,
N. J.
,
Cohen-Or
,
D.
,
Gong
,
W.
,
Su
,
Q.
, and
Chen
,
B.
,
2013
, “
Sketch-to-Design: Context-Based Part Assembly
,”
Comput. Graphics Forum
,
32
(
8
), pp.
233
245
.
20.
Zou
,
C.
,
Peng
,
X.
,
Lv
,
H.
,
Chen
,
S.
,
Fu
,
H.
, and
Liu
,
J.
,
2015
, “
Sketch-Based 3-D Modeling for Piecewise Planar Objects in Single Images
,”
Comput. Graphics
,
46
(
8
), pp.
130
137
.
21.
Olsen
,
L.
,
Samavati
,
F. F.
,
Sousa
,
M. C.
, and
Jorge
,
J. A.
,
2009
, “
Sketch-Based Modeling: A Survey
,”
Comput. Graphics
,
33
(
1
), pp.
85
103
.
22.
Zhang
,
D.
, and
Lu
,
G.
,
2004
, “
Review of Shape Representation and Description Techniques
,”
Pattern Recognit.
,
37
(
1
), pp.
1
19
.
23.
Sá Junior
,
J. J. D. M.
, and
Backes
,
A. R.
,
2015
, “
Shape Classification Using Line Segment Statistics
,”
Inf. Sci.
,
305
, pp.
349
356
.
24.
Belongie
,
S.
,
Malik
,
J.
, and
Puzicha
,
J.
,
2002
, “
Shape Matching and Object Recognition Using Shape Contexts
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
24
), pp.
509
522
.
25.
Feng
,
J.
,
Ip
,
H. H. S.
,
Lai
,
L. Y.
, and
Linney
,
A.
,
2008
, “
Robust Point Correspondence Matching and Similarity Measuring for 3D Models by Relative Angle-Context Distributions
,”
Image Vision Comput.
,
26
(
6
), pp.
761
775
.
26.
Daliri
,
M. R.
, and
Torre
,
V.
,
2008
, “
Robust Symbolic Representation for Shape Recognition and Retrieval
,”
Pattern Recognit.
,
41
(
5
), pp.
1799
1815
.
27.
van de Panne
,
M.
, and
Sharon
,
D.
,
2011
, “
Flexible Parts-Based Sketch Recognition
,”
Sketch-Based Interfaces and Modeling
,
J.
Jorge
and
F.
Samavati
, eds.,
Springer
,
London
, pp.
153
179
.
28.
Lugo
,
J. E.
,
Schmiedeler
,
J. P.
,
Batill
,
S. M.
, and
Carlson
,
L.
,
2015
, “
Quantification of Classical Gestalt Principles in Two-Dimensional Product Representations
,”
ASME J. Mech. Des.
,
137
(
9
), p.
94502
.
29.
Prats
,
M.
,
Earl
,
C.
,
Garner
,
S.
, and
Jowers
,
I.
,
2006
, “
Shape Exploration of Designs in a Style: Toward Generation of Product Designs
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
20
(
3
), pp.
201
215
.
30.
Prats
,
M.
,
Lim
,
S.
,
Jowers
,
I.
,
Garner
,
S. W.
, and
Chase
,
S.
,
2009
, “
Transforming Shape in Design: Observations From Studies of Sketching
,”
Des. Stud.
,
30
(
5
), pp.
503
520
.
31.
Ranscombe
,
C.
,
Hicks
,
B.
,
Mullineux
,
G.
, and
Singh
,
B.
,
2012
, “
Visually Decomposing Vehicle Images: Exploring the Influence of Different Aesthetic Features on Consumer Perception of Brand
,”
Des. Stud.
,
33
(
4
), pp.
319
341
.
32.
Maier
,
A. M.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
,
2005
, “
A Meta-Model for Communication in Engineering Design
,”
CoDesign Int. J. CoCreation Des. Arts
,
1
(
4
), pp.
243
254
.
33.
Hannah
,
R.
,
Joshi
,
S.
, and
Summers
,
J. D.
,
2012
, “
A User Study of Interpretability of Engineering Design Representations
,”
J. Eng. Des.
,
23
(
6
), pp.
443
468
.
34.
Burns
,
K.
,
2006
, “
Atoms of EVE’: A Bayesian Basis for Esthetic Analysis of Style in Sketching
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
20
(
3
), pp.
185
199
.
35.
Khan
,
W. A.
, and
Angeles
,
J.
,
2007
, “
The Role of Entropy in Design Theory and Methodology
,”
CEEA/ACEG
50th Paper, Winnipeg, Canada.https://queens.scholarsportal.info/ojs/index.php/PCEEA/article/view/3764
36.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.
37.
Ekwaro-Osire
,
S.
,
Cruz-Lozano
,
R.
, and
Endeshaw
,
H.
,
2015
, “
Uncertainty in the Communication With a Sketch
,”
2015 International Conference of Society of Design and Process Science
, Society for Design and Process Science, Dallas, TX, pp.
450
456
.
38.
Cruz-Lozano
,
R.
,
Alemayehu
,
F. M.
,
Ekwaro-Osire
,
S.
, and
Endeshaw
,
H.
,
2015
, “
Determining Probability of Importance of Features in a Sketch
,”
ASME
Paper No. IMECE2015-52807.
39.
Cruz-Lozano
,
R.
,
Alemayehu
,
F.
, and
Ekwaro-Osire
,
S.
,
2014
, “
Quantification of Uncertainty in Sketches
,”
ASME
Paper No. IMECE2014-39383.
40.
Murmann
,
J. P.
, and
Frenken
,
K.
,
2006
, “
Toward a Systematic Framework for Research on Dominant Designs, Technological Innovations, and Industrial Change
,”
Res. Policy
,
35
(
7
), pp.
925
952
.
41.
Huenteler
,
J.
,
Ossenbrink
,
J.
,
Schmidt
,
T. S.
, and
Hoffmann
,
V. H.
,
2016
, “
How a Product’s Design Hierarchy Shapes the Evolution of Technological Knowledge—Evidence From Patent-Citation Networks in Wind Power
,”
Res. Policy
,
45
(
6
), pp.
1195
1217
.
42.
Hyun
,
K. H.
,
Lee
,
J.-H.
, and
Kim
,
M.
,
2015
, “
The Gap Between Design Intent and User Response: Identifying Typical and Novel Car Design Elements Among Car Brands for Evaluating Visual Significance
,”
J. Intell. Manuf.
, pp.
1
13
.
43.
Sallaou
,
M.
, and
Fadel
,
G. M.
,
2016
, “
Energy Based Functional Decomposition in Preliminary Design
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051101
.
44.
Jupp
,
J. R.
, and
Gero
,
J. S.
,
2004
, “
Qualitative Representation and Reasoning in Design: A Hierarchy of Shape and Spatial Languages
,”
Visual and Spatial Reasoning in Design III
,
MIT
,
Cambridge, MA
, pp.
139
162
.https://www.researchgate.net/profile/Janice_Glasgow/publication/238324285_Spatial_motifs_in_design/links/541976f70cf203f155adef1c.pdf#page=147
45.
Lun
,
Z.
,
Kalogerakis
,
E.
, and
Sheffer
,
A.
,
2015
, “
Elements of Style: Learning Perceptual Shape Style Similarity
,”
ACM Trans. Graphics
,
34
(
4
), pp.
84:1
84:14
.
46.
Ling
,
H.
, and
Jacobs
,
D. W.
,
2007
, “
Shape Classification Using the Inner-Distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
29
(
2
), pp.
286
299
.
47.
Gorman
,
J. W.
,
Mitchell
,
O. R.
, and
Kuhl
,
F. P.
,
1988
, “
Partial Shape Recognition Using Dynamic Programming
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
10
(
2
), pp.
257
266
.
48.
Masisi
,
L.
,
Nelwamondo
,
V.
, and
Marwala
,
T.
,
2008
, “
The Use of Entropy to Measure Structural Diversity
,”
IEEE International Conference on Computational Cybernetics
ICCC 2008
, Stara Lesn, Slovakia, Nov. 27–29, pp.
41
45
.
49.
Encyclopædia Britannica
, “
Bicycle
,” Britannica Academic, accessed June 28, 2016, academic.eb.com.lib-e2.lib.ttu.edu/levels/collegiate/article/79113
You do not currently have access to this content.