Abstract

This study aims to address the question: can the structural reliability of an offshore wind turbine (OWT) under fatigue loading conditions be predicted more consistently? To respond to that question this study addresses the following specific aims: (1) to obtain a systematic approach that takes into consideration the amount of information available for the uncertainty modeling of the model input parameters and (2) to determine the impact of the most sensitive input parameters on the structural reliability of the OWT through a surrogate model. First, a coupled model to determine the fatigue life of the support structure considering the soil-structure interaction under 15 different loading conditions was developed. Second, a sensitivity scheme using two global analyses was developed to consistently establish the most and least important input parameters of the model. Third, systematic uncertainty quantification (UQ) scheme was employed to model the uncertainties of model input parameters based on their available—data-driven and physics-informed—information. Finally, the impact of the proposed UQ framework on the OWT structural reliability was evaluated through the estimation of the probability of failure of the structure based on the fatigue limit state design criterion. The results show high sensitivity for the wind speed and moderate sensitivity for parameters usually considered as deterministic values in design standards. Additionally, it is shown that applying systematic UQ not only produces a more efficient and better approximation of the fatigue life under uncertainty, but also a more accurate estimation of the structural reliability of offshore wind turbine's structure during conceptual design. Consequently, more reliable, and robust estimations of the structural designs for large offshore wind turbines with limited information may be achieved during the early stages of design.

References

1.
Carswell
,
W.
,
Arwade
,
S. R.
,
DeGroot
,
D. J.
, and
Lackner
,
M. A.
,
2015
, “
Soil–Structure Reliability of Offshore Wind Turbine Monopile Foundations
,”
Wind Energy
,
18
(
3
), pp.
483
498
.10.1002/we.1710
2.
Nikitas
,
G.
,
Bhattacharya
,
S.
,
Vimalan
,
N.
,
Demirci
,
H. E.
,
Nikitas
,
N.
, and
Kumar
,
P.
,
2019
, “
Wind Power: A Sustainable Way to Limit Climate Change
,”
Managing Global Warming
,
T.M.
Letcher
, ed.,
Academic Press
,
UK
, pp.
333
364
.
3.
Bisoi
,
S.
, and
Haldar
,
S.
,
2014
, “
Dynamic Analysis of Offshore Wind Turbine in Clay Considering Soil-Monopile-Tower Interaction
,”
Soil Dyn. Earthq. Eng.
,
63
, pp.
19
35
.10.1016/j.soildyn.2014.03.006
4.
Rezaei
,
R.
,
Fromme
,
P.
, and
Duffour
,
P.
,
2018
, “
Fatigue Life Sensitivity of Monopile-Supported Offshore Wind Turbines to Damping
,”
Renew. Energy
,
123
, pp.
450
459
.10.1016/j.renene.2018.02.086
5.
Bhattacharya
,
S.
,
2014
, “
Challenges in Design of Foundations for Offshore Wind Turbines
,”
Eng. Technol. Ref.
,
1
(
1
), pp.
1
9
.10.1049/etr.2014.0041
6.
Haldar
,
S.
,
Sharma
,
J.
, and
Basu
,
D.
,
2018
, “
Probabilistic Analysis of Monopile-Supported Offshore Wind Turbine in Clay
,”
Soil Dyn. Earthq. Eng.
,
105
, pp.
171
183
.10.1016/j.soildyn.2017.11.028
7.
Toft
,
H. S.
,
Svenningsen
,
L.
,
Moser
,
W.
,
Sørensen
,
J. D.
, and
Thøgersen
,
M. L.
,
2016
, “
Wind Climate Parameters for WindTurbine Fatigue Load Assessment
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p.
031010
.10.1115/1.4033111
8.
Muhammed
,
J. J.
,
Jayawickrama
,
P. W.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Analysis in Prediction of Settlements for Spatial Prefabricated Vertical Drains Improved Soft Soil Sites
,”
Geoscience
,
10
(
2
), p.
42
.10.3390/geosciences10020042
9.
Velarde
,
J.
,
Kramhøft
,
C.
, and
Sørensen
,
J. D.
,
2019
, “
Global Sensitivity Analysis of Offshore Wind Turbine Foundation Fatigue Loads
,”
Renew. Energy
,
140
(
March
), pp.
177
189
.10.1016/j.renene.2019.03.055
10.
Pang
,
Z.
,
O'Neill
,
Z.
,
Li
,
Y.
, and
Niu
,
F.
,
2020
, “
The Role of Sensitivity Analysis in the Building Performance Analysis: A Critical Review
,”
Energy Build.
,
209
, p.
109659
.10.1016/j.enbuild.2019.109659
11.
Saltelli
,
A.
, and
Ratto
,
M.
,
2008
, “
Global Sensitivity Analysis
,”
The Primer
,
Wiley
,
UK
.
12.
Glišić
,
A.
,
Ferraz
,
G. T.
, and
Schaumann
,
P.
,
2017
, “
Sensitivity Analysis of Monopiles' Fatigue Stresses to Site Conditions Using Monte Carlo Simulation
,”
Proceedings of the 27th International Offshore and Polar Engineering Conference
,
San Francisco, CA
, June 25–30, pp.
305
311
.
13.
Hübler
,
C.
,
Gebhardt
,
C. G.
, and
Rolfes
,
R.
,
2017
, “
Hierarchical Four-Step Global Sensitivity Analysis of Offshore Wind Turbines Based on Aeroelastic Time Domain Simulations
,”
Renew. Energy
,
111
, pp.
878
891
.10.1016/j.renene.2017.05.013
14.
Murcia
,
J. P.
,
Réthoré
,
P. E.
,
Dimitrov
,
N.
,
Natarajan
,
A.
,
Sørensen
,
J. D.
,
Graf
,
P.
, and
Kim
,
T.
,
2018
, “
Uncertainty Propagation Through an Aeroelastic Wind Turbine Model Using Polynomial Surrogates
,”
Renew. Energy
,
119
, pp.
910
922
.10.1016/j.renene.2017.07.070
15.
Peeringa
,
J.
, and
Bedon
,
G.
,
2017
, “
Fully Integrated Load Analysis Included in the Structural Reliability Assessment of a Monopile Supported Offshore Wind Turbine
,”
Energy Procedia
,
137
, pp.
255
260
.10.1016/j.egypro.2017.10.348
16.
Nispel
,
A.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
, and
Cunha Jr
,
A.
,
2019
, “
Probabilistic Design and Uncertainty Quantification of the Structure of a Monopile Offshore Wind Turbine
,”
ASME
Paper No. IMECE2019-11862.10.1115/IMECE2019-11862
17.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,
Golden
, CO.
18.
Arany
,
L.
,
Bhattacharya
,
S.
,
MacDonald
,
J.
, and
Hogan
,
S. J.
,
2017
, “
Design of Monopiles for Offshore Wind Turbines in 10 Steps
,”
Soil Dyn. Earthq. Eng.
,
92
, pp.
126
152
.10.1016/j.soildyn.2016.09.024
19.
Bhattacharya
,
S.
,
2019
,
Design of Foundations for Offshore Wind Turbines
,
Wiley
,
London, UK
.
20.
Jonkman
,
J.
, and
Buhl
,
M.
, Jr.
,
2005
,
FAST User's Guide
,
Golden
,
CO
.
21.
IEC Standard
,
2009
, “
Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines
,” IEC, Geneva, Switzerland, Standard No. IEC
61400–3
.https://global.ihs.com/doc_detail.cfm?document_name=IEC%2061400%2D3&item_s_key=00517157
22.
DNV Standard
,
2014
, “
Design of Offshore Wind Turbine Structures
,” DNV, Høvik, Norway, Standard No. DNV-OS-J101.
23.
Camp
,
T. R.
,
Morris
,
M. J.
,
Rooij
,
R.
,
van
,
Tempel
,
J.
,
van der
,
Zaaijer
,
M.
,
Henderson
,
A.
,
Argyriadis
,
K.
,
Schwartz
,
S.
,
Just
,
J.
, and
Grainger
,
W.
,
P.
,
D.
,
2003
,
Design Methods for Offshore Wind Turbines at Exposed Sites
, European Commission,
Bristol, UK
.
24.
Koukoura
,
C.
,
Brown
,
C.
,
Natarajan
,
A.
, and
Vesth
,
A.
,
2016
, “
Cross-Wind Fatigue Analysis of a Full Scale Offshore Wind Turbine in the Case of Wind-Wave Misalignment
,”
Eng. Struct.
,
120
, pp.
147
157
.10.1016/j.engstruct.2016.04.027
25.
Van Der Tempel
,
J.
,
2006
,
Design of Support Structures for Offshore Wind Turbines
,
Delft University of Technology
, Delft, The Netherlands.
26.
DNV Standard
,
2016
, “
Fatigue Design of Offshore Steel Structures
,” DNV, Høvik, Norway, Standard No. DNVGL-RP-C203.
27.
Tamura
,
Y.
, and
Kareem
,
A.
,
2013
,
Advanced Structural Wind Engineering
,
Springer
,
Tokyo, Japan
.
28.
DNV
,
2007
, “
Environmental Conditions and Environmental Loads
,” DNV, Høvik, Norway, Standard No. DNV-RP-C25, (April), pp.
1
123
.
29.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
30.
Bhattacharya
,
S.
,
Wang
,
L.
,
Liu
,
J.
, and
Hong
,
Y.
,
2017
, “
Civil Engineering Challenges Associated With Design of Offshore Wind Turbines With Special Reference to China
,”
Wind Energy Eng.
, pp.
243
273
.10.1016/B978-0-12-809451-8.00013-8
31.
Cunha Jr
,
A.
,
2017
, “
Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework
,”
Probabilistic Prognostics and Health Management of Energy Systems
,
S.
Ekwaro-Osire
,
A. C.
Gonçalves
, and
F. M.
Alemayehu
, eds.,
Springer
, Berlin, pp.
127
156
.
32.
Soize
,
C.
,
2017
,
Uncertainty Quantification: An Accelerated Course With Advanced Applications in Computational Engineering
,
Springer International Publishing
,
Cham, Switzerland
.
33.
Dias
,
J. P.
,
Ekwaro-Osire
,
S.
,
Cunha
,
A.
,
Dabetwar
,
S.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Endeshaw
,
H. B.
,
2019
, “
Parametric Probabilistic Approach for Cumulative Fatigue Damage Using Double Linear Damage Rule Considering Limited Data
,”
Int. J. Fatigue
,
127
,
246
258
.10.1016/j.ijfatigue.2019.06.011
34.
Nispel
,
A.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Probabilistic Analysis of the Fatigue Life of Offshore Wind Turbine Structures
,”
ASME
Paper No. GT2020-14742.10.1115/GT2020-14742
35.
Slot
,
R. M. M.
,
Sørensen
,
J. D.
,
Sudret
,
B.
,
Svenningsen
,
L.
, and
Thøgersen
,
M. L.
,
2020
, “
Surrogate Model Uncertainty in Wind Turbine Reliability Assessment
,”
Renew. Energy
,
151
, pp.
1150
1162
.10.1016/j.renene.2019.11.101
36.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
Proceedings of the Second International Conference on Vulnerability and Risk Analysis and Management and the Sixth International Symposium on Uncertainty Modeling and Analysis
, July 13–16,
Liverpool, UK
, pp.
2554
2563
.
37.
Ulazia
,
A.
,
Nafarrate
,
A
,
Gabriel Ibarra-Berastegi
,
J. S.
, and
Carreno-Madinabeitia
,
S.
,
2019
, “
The Consequences of Air Density Variations Over Northeastern Scotland for Offshore Wind Energy Potential
,”
Energies
,
12
(13),
2635
.10.3390/en12132635
38.
Abdalla
,
S.
, and
Cavaleri
,
L.
,
2002
, “
Effect of Wind Variability and Variable Air Density on Wave Modeling
,”
J. Geophys. Res. C Ocean.
,
107
(
C7
), p.
17
.10.1029/2000JC000639
39.
Velarde
,
J.
,
Kramhøft
,
C.
,
Sørensen
,
J. D.
, and
Zorzi
,
G.
,
2020
, “
Fatigue Reliability of Large Monopiles for Offshore Wind Turbines
,”
Int. J. Fatigue
,
134
, p.
105487
.10.1016/j.ijfatigue.2020.105487
40.
Velarde
,
J.
,
Vanem
,
E.
,
Kramhøft
,
C.
, and
Sørensen
,
J. D.
,
2019
, “
Probabilistic Analysis of Offshore Wind Turbines Under Extreme Resonant Response: Application of Environmental Contour Method
,”
Appl. Ocean Res.
,
93
(
October
), p.
101947
.10.1016/j.apor.2019.101947
41.
Fonseca de Oliveira Correia
,
J. A.
,
Jesus
,
A.
,
Blasón
,
S.
,
Calvente
,
M.
, and
Fernández-Canteli
,
A.
,
2016
, “
Probabilistic Non-Linear Cumulative Fatigue Damage of the P355NL1 Pressure Vessel Steel
,”
ASME
Paper No. PVP2016-63920.10.1115/PVP2016-63920
42.
Song
,
T. T.
,
2004
,
Fundamentals of Probability and Statistics for Engineers
,
Wiley
,
West Sussex, UK
.
You do not currently have access to this content.