Abstract

A technique based on the Wiener path integral (WPI) is developed for determining the stochastic response of diverse nonlinear systems with fractional derivative elements. Specifically, a reduced-order WPI formulation is proposed, which can be construed as an approximation-free dimension reduction approach that renders the associated computational cost independent of the total number of stochastic dimensions of the problem. In fact, the herein developed technique can determine, directly, any lower-dimensional joint response probability density function corresponding to a subset only of the response vector components. This is done by utilizing an appropriate combination of fixed and free boundary conditions in the related variational, functional minimization, problem. Notably, the reduced-order WPI formulation is particularly advantageous for problems where the interest lies in few only specific degrees-of-freedom whose stochastic response is critical for the design and optimization of the overall system. An indicative numerical example is considered pertaining to a stochastically excited tuned mass-damper-inerter nonlinear system with a fractional derivative element. Comparisons with relevant Monte Carlo simulation data demonstrate the accuracy and computational efficiency of the technique.

References

1.
Lin
,
Y. K.
,
1967
,
Probabilistic Theory of Structural Dynamics
,
McGraw-Hill
, New York.
2.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
, Mineola, NY.
3.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
Wiley, Ltd
.,
Chichester, UK
.
4.
Grigoriu
,
M.
,
2012
,
Stochastic Systems: Uncertainty Quantification and Propagation
, Springer Series in Reliability Engineering,
Springer
,
London
.
5.
Spanos
,
P. D.
,
Kong
,
F.
,
Li
,
J.
, and
Kougioumtzoglou
,
I. A.
,
2016
, “
Harmonic Wavelets Based Excitation–Response Relationships for Linear Systems: A Critical Perspective
,”
Probab. Eng. Mech.
,
44
, pp.
163
173
.10.1016/j.probengmech.2015.09.021
6.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2016
, “
Harmonic Wavelets Based Response Evolutionary Power Spectrum Determination of Linear and Non-Linear Oscillators With Fractional Derivative Elements
,”
Int. J. Non-Linear Mech.
,
80
, pp.
66
75
.10.1016/j.ijnonlinmec.2015.11.010
7.
Pirrotta
,
A.
,
Kougioumtzoglou
,
I. A.
,
Di Matteo
,
A.
,
Fragkoulis
,
V. C.
,
Pantelous
,
A. A.
, and
Adam
,
C.
,
2021
, “
Deterministic and Random Vibration of Linear Systems With Singular Parameter Matrices and Fractional Derivative Terms
,”
J. Eng. Mech.
,
147
(
6
), pp.
1
12
.10.1061/(ASCE)EM.1943-7889.0001937
8.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
,
Academic Press
, New York.
9.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), epub.10.1098/rsta.2012.0433
10.
Tarasov
,
V. E.
,
2017
, “
Fractional Mechanics of Elastic Solids: Continuum Aspects
,”
J. Eng. Mech.
,
143
(
5)
, pp.
1
8
.10.1061/(ASCE)EM.1943-7889.0001074
11.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.10.1016/j.mechmat.2011.08.016
12.
Huang
,
Z. L.
, and
Jin
,
X.
,
L.
,
2009
, “
Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fractional Derivative
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1121
1135
.10.1016/j.jsv.2008.06.026
13.
Spanos
,
P. D.
, and
Evangelatos
,
G. I.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives–Time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
811
821
.10.1016/j.soildyn.2010.01.013
14.
Spanos
,
P. D.
,
Kougioumtzoglou
,
I. A.
,
dos Santos
,
K. R. M.
, and
Beck
,
A. T.
,
2018
, “
Stochastic Averaging of Nonlinear Oscillators: Hilbert Transform Perspective
,”
J. Eng. Mech.
,
144
(
2
), p.
04017173
.10.1061/(ASCE)EM.1943-7889.0001410
15.
Fragkoulis
,
V. C.
,
Kougioumtzoglou
,
I. A.
,
Pantelous
,
A. A.
, and
Beer
,
M.
,
2019
, “
Non-Stationary Response Statistics of Nonlinear Oscillators With Fractional Derivative Elements Under Evolutionary Stochastic Excitation
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2291
2303
.10.1007/s11071-019-05124-0
16.
Spanos
,
P. D.
, and
Zhang
,
W.
,
2022
, “
Nonstationary Stochastic Response Determination of Nonlinear Oscillators Endowed With Fractional Derivatives
,”
Int. J. Non-Linear Mech.
,
146
, p.
104170
.10.1016/j.ijnonlinmec.2022.104170
17.
Di Paola
,
M.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
Stationary and Non-Stationary Stochastic Response of Linear Fractional Viscoelastic Systems
,”
Probab. Eng. Mech.
,
28
, pp.
85
90
.10.1016/j.probengmech.2011.08.017
18.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.10.1016/j.probengmech.2011.08.022
19.
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2020
, “
Functional Series Expansions and Quadratic Approximations for Enhancing the Accuracy of the Wiener Path Integral Technique
,”
J. Eng. Mech.
,
146
(
7
), p.
04020065
.10.1061/(ASCE)EM.1943-7889.0001793
20.
Petromichelakis
,
I.
, and
Kougioumtzoglou
,
I. A.
,
2020
, “
Addressing the Curse of Dimensionality in Stochastic Dynamics: A Wiener Path Integral Variational Formulation With Free Boundaries
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
476
(
2243
), epub.10.1098/rspa.2020.0385
21.
Zhang
,
Y.
,
Kougioumtzoglou
,
I. A.
, and
Kong
,
F.
,
2023
, “
A Wiener Path Integral Technique for Determining the Stochastic Response of Nonlinear Oscillators With Fractional Derivative Elements: A Constrained Variational Formulation With Free Boundaries
,”
Probab. Eng. Mech.
,
71
, p.
103410
.10.1016/j.probengmech.2022.103410
22.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.10.1016/j.probengmech.2014.07.001
23.
Mavromatis
,
I. G.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2023
, “
A Wiener Path Integral Formalism for Treating Nonlinear Systems With Non-Markovian Response Processes
,”
J. Eng. Mech.
,
149
(
1)
, pp.
1
11
.10.1061/JENMDT.EMENG-6873
24.
Gardiner
,
C.
,
1985
,
Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences
, 3rd ed.,
Springer-Verlag
, Berlin.
25.
Grigoriu
,
M.
,
2002
,
Stochastic Calculus
,
Birkhäuser
,
Boston, MA
.
26.
Øksendal
,
B.
,
2003
,
Stochastic Differential Equations
, 5th ed.,
Universitext, Springer
,
Berlin, Heidelberg
.
27.
Chaichian
,
M.
, and
Demichev
,
A.
,
2001
,
Path Integrals in Physics
, Vol.
1
,
IOP Publishing Ltd
., Bristol, UK.
28.
Kougioumtzoglou
,
I. A.
,
2017
, “
A Wiener Path Integral Solution Treatment and Effective Material Properties of a Class of One-Dimensional Stochastic Mechanics Problems
,”
J. Eng. Mech.
,
143
(
6
), pp.
1
12
.10.1061/(ASCE)EM.1943-7889.0001211
29.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
30.
Zhao
,
Y.
,
Psaros
,
A. F.
,
Petromichelakis
,
I.
, and
Kougioumtzoglou
,
I. A.
,
2022
, “
A Quadratic Wiener Path Integral Approximation for Stochastic Response Determination of Multi-Degree-of-Freedom Nonlinear Systems
,”
Probab. Eng. Mech.
,
69
, p.
103319
.10.1016/j.probengmech.2022.103319
31.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2020
, “
Stochastic Response Determination of Nonlinear Structural Systems With Singular Diffusion Matrices: A Wiener Path Integral Variational Formulation With Constraints
,”
Probab. Eng. Mech.
,
60
, p.
103044
.10.1016/j.probengmech.2020.103044
32.
Petromichelakis
,
I.
,
Bosse
,
R. M.
,
Kougioumtzoglou
,
I. A.
, and
Beck
,
A. T.
,
2021
, “
Wiener Path Integral Most Probable Path Determination: A Computational Algebraic Geometry Solution Treatment
,”
Mech. Syst. Signal Process.
,
153
, p.
107534
.10.1016/j.ymssp.2020.107534
33.
Psaros
,
A. F.
,
Zhao
,
Y.
, and
Kougioumtzoglou
,
I. A.
,
2020
, “
An Exact Closed-Form Solution for Linear Multi-Degree-of-Freedom Systems Under Gaussian White Noise Via the Wiener Path Integral Technique
,”
Probab. Eng. Mech.
,
60
, p.
103040
.10.1016/j.probengmech.2020.103040
34.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
, San Diego, CA.
35.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
,
1963
,
The Calculus of Variations
,
Prentice Hall
, Upper Saddle River, NJ.
36.
Agrawal
,
O. P.
,
2002
, “
Formulation of Euler-Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
,
272
, pp.
368
379
.10.1016/S0022-247X(02)00180-4
37.
Almeida
,
R.
, and
Torres
,
D. F.
,
2009
, “
Calculus of Variations With Fractional Derivatives and Fractional Integrals
,”
Appl. Math. Lett.
,
22
(
12
), pp.
1816
1820
.10.1016/j.aml.2009.07.002
38.
Malinowska
,
A. B.
, and
Torres
,
D. F.
,
2010
, “
Generalized Natural Boundary Conditions for Fractional Variational Problems in Terms of the Caputo Derivative
,”
Comput. Math. Appl.
,
59
(
9
), pp.
3110
3116
.10.1016/j.camwa.2010.02.032
39.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
, Philadelphia, PA.
40.
Baleanu
,
D.
, and
Trujillo
,
J. J.
,
2008
, “
On Exact Solutions of a Class of Fractional Euler–Lagrange Equations
,”
Nonlinear Dyn.
,
52
(
4
), pp.
331
335
.10.1007/s11071-007-9281-7
41.
Di Matteo
,
A.
, and
Pirrotta
,
A.
,
2015
, “
Generalized Differential Transform Method for Nonlinear Boundary Value Problem of Fractional Order
,”
Commun. Nonlinear Sci. Numer. Simul.
,
29
(
1–3
), pp.
88
101
.10.1016/j.cnsns.2015.04.017
42.
Atanacković
,
T. M.
,
Konjik
,
S.
, and
Pilipović
,
S.
,
2008
, “
Variational Problems With Fractional Derivatives: Euler–Lagrange Equations
,”
J. Phys. A: Math. Theor.
,
41
(
9
), p.
095201
.10.1088/1751-8113/41/9/095201
43.
Kierzenka
,
J.
, and
Shampine
,
L. F.
,
2008
, “
A BVP Solver That Controls Residual and Error
,”
J. Numer. Anal., Ind. Appl. Math.
,
3
(
1–2
), pp.
27
41
.10.1145/502800.502801
44.
Smith
,
M. C.
,
2020
, “
The Inerter: A Retrospective
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
3
, pp.
361
391
.10.1146/annurev-control-053018-023917
45.
Wagg
,
D. J.
,
2021
, “
A Review of the Mechanical Inerter: Historical Context, Physical Realisations and Nonlinear Applications
,”
Nonlinear Dyn.
,
104
(
1
), pp.
13
34
.10.1007/s11071-021-06303-8
46.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper–Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.10.1016/j.probengmech.2014.03.007
47.
De Angelis
,
M.
,
Giaralis
,
A.
,
Petrini
,
F.
, and
Pietrosanti
,
D.
,
2019
, “
Optimal Tuning and Assessment of Inertial Dampers With Grounded Inerter for Vibration Control of Seismically Excited Base-Isolated Systems
,”
Eng. Struct.
,
196
, p.
109250
.10.1016/j.engstruct.2019.05.091
48.
Pietrosanti
,
D.
,
De Angelis
,
M.
, and
Giaralis
,
A.
,
2021
, “
Experimental Seismic Performance Assessment and Numerical Modelling of Nonlinear Inerter Vibration Absorber (IVA)-Equipped Base Isolated Structures Tested on Shaking Table
,”
Earthquake Eng. Struct. Dyn.
,
50
(
10
), pp.
2732
2753
.10.1002/eqe.3469
49.
Moghimi
,
G.
, and
Makris
,
N.
,
2021
, “
Seismic Response of Yielding Structures Equipped With Inerters
,”
Soil Dyn. Earthquake Eng.
,
141
, p.
106474
.10.1016/j.soildyn.2020.106474
50.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2021
, “
Stochastic Response Analysis and Reliability-Based Design Optimization of Nonlinear Electromechanical Energy Harvesters With Fractional Derivative Elements
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
1
), pp.
1
13
.10.1115/1.4049232
51.
Rüdinger
,
F.
,
2006
, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
,
28
(
13
), pp.
1774
1779
.10.1016/j.engstruct.2006.01.006
52.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
(
2
), pp.
229
241
.10.1002/eqe.4290190207
You do not currently have access to this content.