Abstract

Inspection and Maintenance methods development have a pivotal role in preventing the uncertainty-induced risks in the oil and gas industry. A key aspect of inspection is evaluating the risk of equipment from the scheduled and monitored assessment in the dynamic system. This activity includes assessing the modification factor's probability of failure and calculating the equipment's remaining useful life (RUL). The traditional inspection model constitutes a partial solution to grouping the vast amount of real-data inspection and observations at equal intervals. This literature review aims to offer a comprehensive review concerning the benefit of machine learning in managing the risk while incorporating time-series forecasting studies and an overview of risk-based inspection methods (e.g., quantitative, semiquantitative, and qualitative). A literature review with a deductive approach is used to discuss the improvement of the clustering Gaussian mixture model to overcome the noncircular shape data that may show in the K-Means models. Machine learning classifiers such as Decision Trees, Logistic Regression, Support Vector Machines, K-nearest neighbors, and Random Forests were selected to provide a platform for risk assessment and give a promising prediction toward the actual condition and the severity level of equipment. This work approaches complementary tools and grows interest in embedded artificial intelligence in Risk Management systems and can be used as the basis of more robust guidance to organize complexity in handling inspection data, but further and future research is required.

References

1.
Bhatia
,
K.
,
Khan
,
F.
,
Patel
,
H.
, and
Abbassi
,
R.
,
2019
, “
Dynamic Risk-Based Inspection Methodology
,”
J. Loss Prev. Process Ind.
,
62
, p.
103974
.10.1016/j.jlp.2019.103974
2.
Amaya-Gómez
,
R.
,
Sánchez-Silva
,
M.
,
Bastidas-Arteaga
,
E.
,
Schoefs
,
F.
, and
Muñoz
,
F.
,
2019
, “
Reliability Assessments of Corroded Pipelines Based on Internal Pressure – A Review
,”
Eng. Failure Anal.
,
98
, pp.
190
214
.10.1016/j.engfailanal.2019.01.064
3.
Zhongli
,
M.
, and
Hongda
,
L.
,
2007
, “
Pipeline Defect Detection and Sizing Based on MFL Data Using Immune RBF Neural Networks
,”
2007 IEEE Congress on Evolutionary Computation
, Singapore, Sept. 25–28, pp.
3399
3403
.10.1109/CEC.2007.4424911
4.
Witek
,
M.
,
2016
, “
Gas Transmission Pipeline Failure Probability Estimation and Defect Repairs Activities Based on in-Line Inspection Data
,”
Eng. Fail. Anal.
, 70, pp.
255
272
.10.1016/j.engfailanal.2016.09.001
5.
Rachman
,
A.
, and
Chandima
,
R. R. M.
,
2018
, “
Artificial Neural Network Model for Risk-Based Inspection Screening Assessment of Oil and Gas Production System
,” Paper Presented at the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, Paper No.
ISOPE-I-18-288
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE18/All-ISOPE18/ISOPE-I-18-288/20562
6.
Wang
,
G.
,
Yan
,
T.
,
Zhang
,
J.
,
Zhao
,
L.
, and
Chen
,
J.
,
2011
, “
Risk Based Inspection on the Equipment of Low Density Polyethylene
,”
Procedia Eng.
, 15, pp.
1145
1148
.10.1016/j.proeng.2011.08.211
7.
Zhang
,
S.
,
Yan
,
Y.
,
Shi
,
L.
,
Li
,
L.
,
Zhao
,
L.
,
Wang
,
R.
, and
Yan
,
X.
,
2021
, “
A Semi-Empirical Model for Underground Gas Storage Injection-Production String Time Series Remaining Useful Life Analysis in Process Safety Operation
,”
Process Saf. Environ. Prot.
,
154
, pp.
1
17
.10.1016/j.psep.2021.08.003
8.
Guo
,
X.
,
Liu
,
J.
,
Dai
,
L.
,
Liu
,
Q.
,
Fang
,
D.
,
Wei
,
A.
, and
Wang
,
J.
,
2021
, “
Friction-Wear Failure Mechanism of Tubing Strings Used in High-Pressure, High-Temperature and High-Yield Gas Wells
,”
Wear
,
468–469
, p.
203576
.10.1016/j.wear.2020.203576
9.
Mohril
,
R. S.
,
Solanki
,
B. S.
,
Kulkarni
,
M. S.
, and
Lad
,
B. K.
,
2020
, “
Residual Life Prediction in the Presence of Human Error Using Machine Learning
,”
IFAC-PapersOnLine
, 53(3), pp.
119
124
.10.1016/j.ifacol.2020.11.019
10.
Losi
,
E.
, et al.,
2022
, “
Prediction of Gas Turbine Trip: A Novel Methodology Based on Random Forest Models
,”
ASME. J. Eng. Gas Turbines Power
. 144(3), p.
031025
.10.1115/1.4053194
11.
Guo
,
C.
,
Zhou
,
J.
,
Chen
,
H.
,
Ying
,
N.
,
Zhang
,
J.
, and
Zhou
,
D.
,
2020
, “
Variational Autoencoder With Optimizing Gaussian Mixture Model Priors
,”
IEEE Access
,
8
, pp.
43992
44005
.10.1109/ACCESS.2020.2977671
12.
Rachman
,
A.
, and
Ratnayake
,
R. M. C.
,
2019
, “
Machine Learning Approach for Risk-Based Inspection Screening Assessment
,”
Reliab. Eng. Syst. Saf.
, 185, pp.
518
532
.10.1016/j.ress.2019.02.008
13.
Song
,
J. S.
,
Lok
,
V.
,
Yoon
,
K. B.
,
Ma
,
Y. W.
, and
Kong
,
B. O.
,
2021
, “
Quantitative Risk-Based Inspection Approach for High-Energy Piping Using a Probability Distribution Function and Modification Factor
,”
Int. J. Press. Vessel. Pip.
,
189
, p.
104281
.10.1016/j.ijpvp.2020.104281
14.
Alfon
,
P.
,
Soedarsono
,
J. W.
, and
Priadi
,
D.
, and
Sulistijono
,
2013
, “
Application of Hoop Stress Limit State and Predicted Corrosion Rate in Underground Gas Transmission Pipeline Inspection Plan
,”
Appl. Mech. Mater.
, 328, pp.
942
949
.10.4028/www.scientific.net/amm.328.942
15.
Leuvinadrie
,
L. P.
, and
Soedarsono
,
J. W. M.
,
2021
, “
Pipe Stress Simulation and Failure Analysis of Carbon Steel Flange Spool in CO2gas Flow Condition
,”
AIP Conference Proceedings 2338
, p.
040016
.10.1063/5.0070886
16.
Banjara
,
N. K.
,
Sasmal
,
S.
, and
Voggu
,
S.
,
2020
, “
Machine Learning Supported Acoustic Emission Technique for Leakage Detection in Pipelines
,”
Int. J. Press. Vessel. Pip.
,
188
, p.
104243
.10.1016/j.ijpvp.2020.104243
17.
Zhou
,
L.
,
Pan
,
S.
,
Wang
,
J.
, and
Vasilakos
,
A. V.
,
2017
, “
Machine Learning on Big Data: Opportunities and Challenges
,”
Neurocomputing
,
237
, pp.
350
361
.10.1016/j.neucom.2017.01.026
18.
Warnars
,
H. L. H. S.
,
Anwar
,
N.
,
Randriatoamanana
,
R.
, and
Sanchez
,
H. E. P.
,
2017
, “
Mining Similar Pattern With Attribute Oriented Induction High Level Emerging Pattern (AOI-HEP) Data Mining Technique
,”
J. Teknol.
, 79(7–2), pp.
51
57
.10.11113/jt.v79.11876
19.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Sci.
,
349
(
6245
), pp.
255
260
.10.1126/science.aaa8415
20.
Littell
,
J. H.
,
2006
,
Systematic Reviews in the Social Sciences: A Review, Evidence Policy
, 2(4), pp.
535
537
.10.1332/174426406778881728
21.
American Petroleum Institute
,
2016
, API Recommended Practice 581 - Risk-Based Inspection Methodology,
API
Publishing Services, Washington, DC.
22.
Kang
,
S.
,
Khanjari
,
A.
,
You
,
S.
, and
Lee
,
J. H.
,
2021
, “
Comparison of Different Statistical Methods Used to Estimate Weibull Parameters for Wind Speed Contribution in Nearby an Offshore Site, Republic Of Korea
,”
Energy Rep.
,
7
, pp.
7358
7373
.10.1016/j.egyr.2021.10.078
23.
Vianello
,
C.
,
Milazzo
,
M. F.
,
Guerrini
,
L.
,
Mura
,
A.
, and
Maschio
,
G.
,
2016
, “
A Risk-Based Tool to Support the Inspection Management in Chemical Plants
,”
J. Loss Prev. Process Ind.
, 41, pp.
154
168
.10.1016/j.jlp.2016.03.005
24.
Vianello
,
C.
,
Maschio
,
G.
,
Mura
,
A.
,
Babolin
,
D.
,
Gambato
,
F.
, and
Attori
,
C.
,
2013
, “
Development of a RBI Tool for Inspection Management in Chemical Plants
,”
Chem. Eng. Trans.
, 31, pp.
235
240
.10.3303/CET1331040
25.
American Petroleum Institutes (API)
,
2016
,
Risk-Based Inspection Methodology
,
American Petroleum Institutes (API)
, Washington, DC.
26.
Tian
,
X.
,
Jiao
,
W.
,
Liu
,
T.
,
Ren
,
L.
, and
Song
,
B.
,
2021
, “
Leakage Detection of Low-Pressure Gas Distribution Pipeline System Based on Linear Fitting and Extreme Learning Machine
,”
Int. J. Press. Vessel. Pip.
,
194
, p.
104553
.10.1016/j.ijpvp.2021.104553
27.
Wang
,
Y.
,
Zhang
,
P.
, and
Qin
,
G.
,
2021
, “
Reliability Assessment of Pitting Corrosion of Pipeline Under Spatiotemporal Earthquake Including Spatial-Dependent Corrosion Growth
,”
Process Saf. Environ. Prot.
, 148, pp.
166
178
.10.1016/j.psep.2020.10.005
28.
Shaik
,
N. B.
,
Pedapati
,
S. R.
, and
Dzubir
,
F. A. B. A.
,
2021
, “
Remaining Useful Life Prediction of a Piping System Using Artificial Neural Networks: A Case Study
,”
Ain Shams Eng. J.
, 13(2), p.
101535
.10.1016/j.asej.2021.06.021
29.
El-Abbasy
,
M. S.
,
Senouci
,
A.
,
Zayed
,
T.
,
Mirahadi
,
F.
, and
Parvizsedghy
,
L.
,
2014
, “
Artificial Neural Network Models for Predicting Condition of Offshore Oil and Gas Pipelines
,”
Autom. Constr.
, 45, pp.
50
65
.10.1016/j.autcon.2014.05.003
30.
da
,
H.
,
Bisaggio
,
C.
, and
Netto
,
T. A.
,
2015
, “
Predictive Analyses of the Integrity of Corroded Pipelines Based on Concepts of Structural Reliability and Bayesian Inference
,”
Mar. Struct.
, 41, pp.
180
199
.10.1016/j.marstruc.2015.02.003
31.
Kalantarnia
,
M.
,
Khan
,
F.
, and
Hawboldt
,
K.
,
2009
, “
Dynamic Risk Assessment Using Failure Assessment and Bayesian Theory
,”
J. Loss Prev. Process Ind.
, 22(5), pp.
600
606
.10.1016/j.jlp.2009.04.006
32.
Hashemi
,
S. J.
,
Ahmed
,
S.
, and
Khan
,
F. I.
,
2014
, “
Risk-Based Operational Performance Analysis Using Loss Functions
,”
Chem. Eng. Sci.
, 116, pp.
99
108
.10.1016/j.ces.2014.04.042
33.
Alrowaie
,
F.
,
Gopaluni
,
R. B.
, and
Kwok
,
K. E.
,
2012
, “
Fault Detection and Isolation in Stochastic Non-Linear State-Space Models Using Particle Filters
,”
Control Eng. Pract.
,
20
(
10
), pp.
1016
1032
.10.1016/j.conengprac.2012.05.008
34.
El-Abbasy
,
M.
,
2013
, “
Predicting Offshore Oil and Gas Pipelines Condition
,”
Qatar Foundation Annual Research Forum Proceedings
. EEP 0510.5339/qfarf.2013.EEP-05.
35.
El-Abbasy
,
M. S.
,
Chanati
,
H. E.
,
Mosleh
,
F.
,
Senouci
,
A.
,
Zayed
,
T.
, and
Al-Derham
,
H.
,
2016
, “
Integrated Performance Assessment Model for Water Distribution Networks
,”
Struct. Infrastruct. Eng.
, 12(11), pp.
1505
–1524
.10.1080/15732479.2016.1144620
36.
Pérez-Pérez
,
E. J.
,
López-Estrada
,
F. R.
,
Valencia-Palomo
,
G.
,
Torres
,
L.
,
Puig
,
V.
, and
Mina-Antonio
,
J. D.
,
2021
, “
Leak Diagnosis in Pipelines Using a Combined Artificial Neural Network Approach
,”
Control Eng. Pract.
,
107
, p.
104677
.10.1016/j.conengprac.2020.104677
37.
Patri
,
O. P.
,
Reyna
,
N.
,
Panangadan
,
A.
, and
Prasanna
,
V.
,
2015
, “
Predicting Compressor Valve Failures From Multi-Sensor Data
,” Conference: SPE Western Regional Meeting, Garden Grove, CA, Paper No.
SPE-174044-MS
, pp.
1
11
.10.2118/174044-MS
38.
Ferraz
,
IN.
,
Garcia
,
A. C. B.
, and
Bernardini
,
F. C.
,
2009
, “
Artificial Neural Networks Ensemble Used for Pipeline Leak Detection Systems
,”
ASME
Paper No. IPC2008-64664.10.1115/IPC2008-64664
39.
Akram
,
N. A.
,
Isa
,
D.
,
Rajkumar
,
R.
, and
Lee
,
L. H.
,
2014
, “
Active Incremental Support Vector Machine for Oil and Gas Pipeline Defects Prediction System Using Long Range Ultrasonic Transducers
,”
Ultrasound
,
54
(
6
), pp.
1534
1544
.10.1016/j.ultras.2014.03.017
40.
Xu
,
Q.
,
Zhang
,
L.
, and
Liang
,
W.
,
2013
, “
Acoustic Detection Technology for Gas Pipeline Leakage
,”
Process Saf. Environ. Prot.
, 31, pp.
1
7
.10.1016/j.engfailanal.2012.10.020
41.
Xu
,
T.
,
Zeng
,
Z.
,
Huang
,
X.
,
Li
,
J.
, and
Feng
,
H.
,
2021
, “
Pipeline Leak Detection Based on Variational Mode Decomposition and Support Vector Machine Using an Interior Spherical Detector
,”
Process Saf. Environ. Prot.
, 153, pp.
167
177
.10.1016/j.psep.2021.07.024
42.
Isa
,
D.
, and
Rajkumar
,
R.
,
2009
, “
Pipeline Defect Prediction Using Support Vector Machines
,”
Appl. Artif. Intell.
, 23(8), 758–77110.1080/08839510903210589.
43.
Lee
,
L. H.
,
Rajkumar
,
R.
,
Lo
,
L. H.
,
Wan
,
C. H.
, and
Isa
,
D.
,
2013
, “
Oil and Gas Pipeline Failure Prediction System Using Long Range Ultrasonic Transducers and Euclidean-Support Vector Machines Classification Approach
,”
Expert Syst. Appl.
, 40(6), pp.
1925
1934
.10.1016/j.eswa.2012.10.006
44.
Khan
,
R. U.
,
Yin
,
J.
,
Mustafa
,
F. S.
, and
Anning
,
N.
,
2021
, “
Risk Assessment for Berthing of Hazardous Cargo Vessels Using Bayesian Networks
,”
Ocean Coast. Manag.
,
210
, p.
105673
.10.1016/j.ocecoaman.2021.105673
45.
Smith
,
M.
,
Capewell
,
M.
,
Pesinis
,
K.
, and
Santana
,
E.
,
2020
, “
Bayesian Network for Data-Driven Inspection Planning of Oil and Gas Pipelines
,” Paper presented at the CORROSION 2020, Houston, TX, June 14, Paper No.
NACE-2020-14832
.https://onepetro.org/NACECORR/proceedings-abstract/CORR20/All-CORR20/NACE-2020-14832/446116
46.
Chalgham
,
W.
,
Wu
,
K. Y.
, and
Mosleh
,
A.
,
2020
, “
System-Level Prognosis and Health Monitoring Modeling Framework and Software Implementation for Gas Pipeline System Integrity Management
,”
J. Nat. Gas Sci. Eng.
,
84
, p.
103671
.10.1016/j.jngse.2020.103671
47.
Cui
,
Y.
,
Quddus
,
N.
, and
Mashuga
,
C. V.
,
2020
, “
Bayesian Network and Game Theory Risk Assessment Model for Third-Party Damage to Oil and Gas Pipelines
,”
Process Saf. Environ. Prot.
, 134, pp.
178
188
.10.1016/j.psep.2019.11.038
48.
Shan
,
X.
,
Liu
,
K.
, and
Sun
,
P. L.
,
2017
, “
Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network With a Bow-Tie Model
,”
Sci. Program.
,
2017
, pp.
1
11
.10.1155/2017/3639524
49.
Wang
,
Z.
, and
Li
,
S.
,
2020
, “
Data-Driven Risk Assessment on Urban Pipeline Network Based on a Cluster Model
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106781
.10.1016/j.ress.2019.106781
50.
Ali
,
A.
, and
Sheng-Chang
,
C.
,
2020
, “
Characterization of Well Logs Using K-Mean Cluster Analysis
,”
J. Pet. Explor. Prod. Technol.
, 10, pp.
2245
2256
.10.1007/s13202-020-00895-4
51.
Bhaskaran
,
P. E.
,
Chennippan
,
M.
, and
Subramaniam
,
T.
,
2020
, “
Future Prediction & Estimation of Faults Occurrences in Oil Pipelines by Using Data Clustering With Time Series Forecasting
,”
J. Loss Prev. Process Ind.
,
66
, p.
104203
.10.1016/j.jlp.2020.104203
52.
Yuan
,
C.
, and
Yang
,
H.
,
2019
, “
Research on K-Value Selection Method of K-Means Clustering Algorithm
,”
Multidiscip. Sci. J.
, 2(
2
), pp.
226
235
.10.3390/j2020016
53.
Lingxiang
,
Z.
, and
Liang
,
Z.
,
2006
, “
Application of Cluster Analysis Neural Network in the Safety Evaluation for the Urban Underground Gas Pipeline
,”
2006 6th World Congress on Intelligent Control and Automation
, Dalian, China, June 21–23, pp.
2845
2849
.10.1109/WCICA.2006.1712884
54.
Zhu
,
H.
,
Dai
,
H.
,
Yang
,
S.
,
Yan
,
Y.
, and
Lin
,
B.
,
2018
, “
Estimating Power Consumption of Servers Using Gaussian Mixture Model
,” 2017 Fifth International Symposium on Computing and Networking (
CANDAR
), Aomori, Japan, Nov. 19–22, pp.
427
433
.10.1109/CANDAR.2017.44
55.
Patel
,
E.
, and
Kushwaha
,
D. S.
,
2020
, “
Clustering Cloud Workloads: K-Means vs Gaussian Mixture Model
,”
Procedia Comput. Sci.
, 171, pp.
158
167
.10.1016/j.procs.2020.04.017
56.
Di
,
S.
,
Kondo
,
D.
, and
Cappello
,
F.
,
2014
, “
Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center
,”
J. Supercomput.
, 69, pp.
139
160
.10.1007/s11227-014-1131-z
57.
Viroli
,
C.
, and
McLachlan
,
G. J.
,
2019
, “
Deep Gaussian Mixture Models
,”
Stat. Comput.
, 29(1), pp.
43
51
.10.1007/s11222-017-9793-z
58.
Jia
,
W.
,
Tan
,
Y.
,
Liu
,
L.
,
Li
,
J.
,
Zhang
,
H.
, and
Zhao
,
K.
,
2019
, “
Hierarchical Prediction Based on Two-Level Gaussian Mixture Model Clustering for Bike-Sharing System
,”
Knowl.-Based Syst.
, 178, pp.
84
97
.10.1016/j.knosys.2019.04.020
59.
Sayah
,
M.
,
Guebli
,
D.
,
Noureddine
,
Z.
, and
Masry
,
Z. A.
,
2021
, “
Deep LSTM Enhancement for RUL Prediction Using Gaussian Mixture Models
,”
Autom. Control Comput. Sci.
, 55, pp.
15
25
.10.3103/S0146411621010089
60.
Liang
,
W.
, and
Zhang
,
L.
,
2012
, “
A Wave Change Analysis (WCA) Method for Pipeline Leak Detection Using Gaussian Mixture Model
,”
J. Loss Prev. Process Ind.
,
25
(
1
), pp.
60
69
.10.1016/j.jlp.2011.06.017
61.
Rai
,
A.
, and
Kim
,
J. M.
,
2021
, “
A Novel Pipeline Leak Detection Approach Independent of Prior Failure Information
,”
Meas. J. Int. Meas. Confed.
,
167
, p.
108284
.10.1016/j.measurement.2020.108284
62.
Zhang
,
G.
,
Mahfouf
,
M.
,
Abdulkareem
,
M.
,
Gaffour
,
S.-A.
,
Yang
,
Y.-Y.
,
Obajemu
,
O.
,
Yates
,
J.
,
Soberanis
,
S. A.
, and
Pinna
,
C.
,
2016
, “
Hybrid-Modelling of Compact Tension Energy in High Strength Pipeline Steel Using a Gaussian Mixture Model Based Error Compensation
,”
Appl. Soft Comput. J.
,
48
, pp.
1
12
.10.1016/j.asoc.2016.06.007
63.
Torres
,
J. F.
,
Hadjout
,
D.
,
Sebaa
,
A.
,
Martínez-Álvarez
,
F.
, and
Troncoso
,
A.
,
2021
, “
Deep Learning for Time Series Forecasting: A Survey
,”
Big Data
,
9
(
1
), pp.
3
21
.10.1089/big.2020.0159
64.
Fairusham Ghazali
,
M.
, and
Samta
,
A. K.
,
2019
, “
Leakage Detection in Pipeline Using Wavelet Transform Method
,”
J. Sci. Appl. Eng.
,
2
(
1
), pp.
29
34
.10.31328/jsae.v2i1.941
65.
Meshkati
,
N.
,
2019
, “
Organizational and Safety Factors in Automated Oil and Gas Pipeline Systems
,”
Human Performance in Automated and Autonomous Systems: Emerging Issues and Practical Perspectives
, 1st ed., CRC Press, Boca Raton, FL, p.
334
.10.1201/9780429458323
66.
Santos
,
R. G.
,
Loh
,
W.
,
Bannwart
,
A. C.
, and
Trevisan
,
O. V.
,
2014
, “
An Overview of Heavy Oil Properties and Its Recovery and Transportation Methods
,”
Braz. J. Chem. Eng.
,
31
(
3
), pp.
571
590
.10.1590/0104-6632.20140313s00001853
67.
Metje
,
N.
,
Chapman
,
D. N.
,
Cheneler
,
D.
,
Ward
,
M.
, and
Thomas
,
A. M.
,
2011
, “
Smart Pipes-Instrumented Water Pipes, Can This Be Made a Reality?
,”
Sensors
,
11
(
8
), pp.
7455
7475
.10.3390/s110807455
68.
Mazumder
,
R. K.
,
Salman
,
A. M.
, and
Li
,
Y.
,
2021
, “
Failure Risk Analysis of Pipelines Using Data-Driven Machine Learning Algorithms
,”
Struct. Saf.
,
89
, p.
102047
.10.1016/j.strusafe.2020.102047
69.
Anghel
,
C. I.
,
2009
, “
Risk Assessment for Pipelines With Active Defects Based on Artificial Intelligence Methods
,”
Int. J. Press. Vessel. Pip.
, 86(7), pp.
403
411
.10.1016/j.ijpvp.2009.01.009
70.
Huang
,
H.
, and
Burton
,
H. V.
,
2019
, “
Classification of in-Plane Failure Modes for Reinforced Concrete Frames With Infills Using Machine Learning
,”
J. Build. Eng.
,
25
, p.
100767
.10.1016/j.jobe.2019.100767
71.
Li
,
D.
,
Zhang
,
P.
,
Ai
,
M.
,
Wang
,
Y.
, and
Chen
,
L.
,
2012
, “
Application of Fuzzy Clustering Method to Pipeline Segmentation Process of Oil & Gas Pipeline Risk Assessment
,”
Nat. Gas Ind.
, 32(7), pp.
1
5
.10.3787/j.issn.1000-0976.2012.07.015
72.
Yang
,
H.
,
Lu
,
L.
, and
Tsai
,
K.
,
2020
, “
Machine Learning Based Predictive Models for CO2 Corrosion in Pipelines With Various Bending Angles
,” Virtual Conference, Oct. 19, Paper No.
SPE-201275-MS
.10.2118/201275-MS
73.
Easwar
,
R.
,
Priyadarshi
,
A.
,
Gaarder
,
A. H.
,
William
,
J. K.
, and
Balaji
,
V.
,
2019
, “
Leveraging Machine Learning (ML) Techniques to Improve Corrosion Risk Prediction in Pipelines
,”
Pipeline Pigging & Integrity Management Conference
, Feb. 20–22, Houston, TX.https://chem.ckcest.cn/Proceeding/Details?id=26155
74.
Heidary
,
R.
,
Gabriel
,
S. A.
,
Modarres
,
M.
,
Groth
,
K. M.
, and
Vahdati
,
N.
,
2020
, “
A Review of Data-Driven Oil and Gas Pipeline Pitting Corrosion Growth Models Applicable for Prognostic and Health Management
,”
Int. J. Prognostics Health Manage.
,
9
(
1
), pp.
1
13
.10.36001/ijphm.2018.v9i1.2695
75.
Ossai
,
C. I.
,
Boswell
,
B.
, and
Davies
,
I.
,
2016
, “
Markov Chain Modelling for Time Evolution of Internal Pitting Corrosion Distribution of Oil and Gas Pipelines
,”
Eng. Fail. Anal.
, 60, pp.
209
228
.10.1016/j.engfailanal.2015.11.052
76.
Liu
,
J.
,
Zang
,
D.
,
Liu
,
C.
,
Ma
,
Y.
, and
Fu
,
M.
,
2019
, “
A Leak Detection Method for Oil Pipeline Based on Markov Feature and Two-Stage Decision Scheme
,”
Meas. J. Int. Meas. Confed.
, 138, pp.
433
445
.10.1016/j.measurement.2019.01.029
77.
Li
,
W.
, and
Liu
,
T.
,
2019
, “
Time Varying and Condition Adaptive Hidden Markov Model for Tool Wear State Estimation and Remaining Useful Life Prediction in Micro-Milling
,”
Mech. Syst. Signal Process
, 131, pp.
689
702
.10.1016/j.ymssp.2019.06.021
78.
Khan
,
F. I.
, and
Haddara
,
M. M.
,
2003
, “
Risk-Based Maintenance (RBM): A Quantitative Approach for Maintenance/Inspection Scheduling and Planning
,”
J. Loss Prev. Process Ind.
, 16(6), pp.
561
573
.10.1016/j.jlp.2003.08.011
79.
Pariyani
,
A.
,
Seider
,
W. D.
,
Oktem
,
U. G.
, and
Soroush
,
M.
,
2012
, “
Dynamic Risk Analysis Using Alarm Databases to Improve Process Safety and Product Quality: Part I-Data Compaction
,”
AIChE J.
,
58
(
3
), pp.
812
825
.10.1002/aic.12643
80.
Bhandari
,
J.
,
Abbassi
,
R.
,
Garaniya
,
V.
, and
Khan
,
F.
,
2015
, “
Risk Analysis of Deepwater Drilling Operations Using Bayesian Network
,”
J. Loss Prev. Process Ind.
, 38, pp.
11
23
.10.1016/j.jlp.2015.08.004
81.
Osarogiagbon
,
A.
,
Muojeke
,
S.
,
Venkatesan
,
R.
,
Khan
,
F.
, and
Gillard
,
P.
,
2020
, “
A New Methodology for Kick Detection During Petroleum Drilling Using Long Short-Term Memory Recurrent Neural Network
,”
Process Saf. Environ. Prot.
, 142, pp.
126
137
.10.1016/j.psep.2020.05.046
82.
Tang
,
H.
,
Zhang
,
S.
,
Zhang
,
F.
, and
Venugopal
,
S.
,
2019
, “
Time Series Data Analysis for Automatic Flow Influx Detection During Drilling
,”
J. Pet. Sci. Eng.
, 172, pp.
1103
1111
.10.1016/j.petrol.2018.09.018
83.
Pui
,
G.
,
Bhandari
,
J.
,
Arzaghi
,
E.
,
Abbassi
,
R.
, and
Garaniya
,
V.
,
2017
, “
Risk-Based Maintenance of Offshore Managed Pressure Drilling (MPD) Operation
,”
J. Pet. Sci. Eng.
, 159, pp.
513
521
.10.1016/j.petrol.2017.09.066
84.
Bertolini
,
M.
,
Bevilacqua
,
M.
,
Ciarapica
,
F. E.
, and
Giacchetta
,
G.
,
2009
, “
Development of Risk-Based Inspection and Maintenance Procedures for an Oil Refinery
,”
J. Loss Prev. Process Ind.
, 22(2), pp.
244
253
.10.1016/j.jlp.2009.01.003
85.
Arzaghi
,
E.
,
Abaei
,
M. M.
,
Abbassi
,
R.
,
Garaniya
,
V.
,
Chin
,
C.
, and
Khan
,
F.
,
2017
, “
Risk-Based Maintenance Planning of Subsea Pipelines Through Fatigue Crack Growth Monitoring
,”
Eng. Fail. Anal.
, 79, pp.
928
939
.10.1016/j.engfailanal.2017.06.003
86.
Brennan
,
F.
,
2013
, “
Risk Based Maintenance for Offshore Wind Structures
,”
Procedia CIRP
, 11, pp.
296
300
.10.1016/j.procir.2013.07.021
87.
Kamsu-Foguem
,
B.
,
2016
, “
Information Structuring and Risk-Based Inspection for the Marine Oil Pipelines
,”
Appl. Ocean Res.
, 56, pp.
132
142
.10.1016/j.apor.2016.01.009
88.
Marhavilas
,
P. K.
,
Koulouriotis
,
D.
, and
Gemeni
,
V.
,
2011
, “
Risk Analysis and Assessment Methodologies in the Work Sites: On a Review, Classification and Comparative Study of the Scientific Literature of the Period 2000-2009
,”
J. Loss Prev. Process Indus.
,
24
(
5
), pp.
477
523
.10.1016/j.jlp.2011.03.004
89.
Mancuso
,
A.
,
Compare
,
M.
,
Salo
,
A.
,
Zio
,
E.
, and
Laakso
,
T.
,
2016
, “
Risk-Based Optimization of Pipe Inspections in Large Underground Networks With Imprecise Information
,”
Reliab. Eng. Syst. Saf.
, 152, pp.
228
238
.10.1016/j.ress.2016.03.011
90.
Nielsen
,
J. S.
, and
Sørensen
,
J. D.
,
2018
, “
Computational Framework for Risk-Based Planning of Inspections, Maintenance and Condition Monitoring Using Discrete Bayesian Networks
,”
Struct. Infrastruct. Eng.
, 14(8), pp.
1082
1094
.10.1080/15732479.2017.1387155
91.
Shekari
,
E.
,
Khan
,
F.
, and
Ahmed
,
S.
,
2019
, “
Dynamic Risk Management of Assets Susceptible to Pitting Corrosion
,”
Corros. Eng. Sci. Technol.
, 54(6), pp.
463
475
.10.1080/1478422X.2019.1615741
92.
Yang
,
D. Y.
, and
Frangopol
,
D. M.
,
2021
, “
Risk-Based Inspection Planning of Deteriorating Structures
,”
Struct. Infrastruct. Eng.
, 18(1), pp.
109
128
.10.1080/15732479.2021.1907600
93.
Caleyo
,
F.
,
Velázquez
,
J. C.
,
Valor
,
A.
, and
Hallen
,
J. M.
,
2009
, “
Probability Distribution of Pitting Corrosion Depth and Rate in Underground Pipelines: A Monte Carlo Study
,”
Corros. Sci.
, 51(9), pp.
1925
1934
.10.1016/j.corsci.2009.05.019
94.
Stepova
,
O.
,
Parashchiienko
,
I.
, and
Lartseva
,
I.
,
2018
, “
Calculation of Steel Pipeline Corrosion Depth at the Galvanic Corrosive Element Operation
,”
Int. J. Eng. Technol.
,
7
(
3.2
), p.
431
.10.14419/ijet.v7i3.2.14566
95.
Caleyo
,
F.
,
González
,
J. L.
, and
Hallen
,
J. M.
,
2002
, “
A Study on the Reliability Assessment Methodology for Pipelines With Active Corrosion Defects
,”
Int. J. Press. Vessel. Pip.
, 79(1), pp.
77
86
.10.1016/S0308-0161(01)00124-7
96.
The American Society of Mechanical Engineers
2009
, “
ASME B31G - Manual for Determining the Remaining Strength of Corroded Pipelines
,” An American National Standard, ASME, New York.
97.
Edelmann
,
D.
,
Móri
,
T. F.
, and
Székely
,
G. J.
,
2021
, “
On Relationships Between the Pearson and the Distance Correlation Coefficients
,”
Stat. Probab. Lett.
,
169
, p.
108960
.10.1016/j.spl.2020.108960
98.
Cawley
,
G. C.
, and
Talbot
,
N. L. C.
,
2010
, “
On Over-Fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
,”
J. Mach. Learn. Res.
, 11, pp.
2079
2107
.https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf
99.
Ogawa
,
H.
,
Takeda
,
S.
,
Machida
,
H.
, and
Nishino
,
S.
,
2010
, “
Study on Pipe Wall Thinning Management Based on Reliability Assessment
,”
Trans. Jpn. Soc. Mech. Eng. Part B
, 76, pp.
439
441
.10.1299/jsmepes.2009.14.69
100.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life estimation - A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.10.1016/j.ejor.2010.11.018
101.
Kaban
,
A. P. S.
,
Ridhova
,
A.
,
Priyotomo
,
G.
,
Elya
,
B.
,
Maksum
,
A.
,
Sadeli
,
Y.
,
Sutopo
,
S.
,
Aditiyawarman
,
T.
,
Riastuti
,
R.
, and
Soedarsono
,
J. W.
,
2021
, “
Development of White Tea Extract as Green Corrosion Inhibitor in Mild Steel Under 1 M Hydrochloric Acid Solution
,”
Eastern-Eur. J. Enterp. Technol.
,
2
(
6 (110)
), pp.
6
20
.10.15587/1729-4061.2021.224435
102.
Ordóñez
,
C.
,
Sánchez Lasheras
,
F.
,
Roca-Pardiñas
,
J.
,
de
,
F. J.
, and
Juez
,
C.
,
2019
, “
A Hybrid ARIMA–SVM Model for the Study of the Remaining Useful Life of Aircraft Engines
,”
J. Comput. Appl. Math.
, 346, pp.
184
191
.10.1016/j.cam.2018.07.008
103.
Ossai
,
C. I.
,
Boswell
,
B.
, and
Davies
,
I. J.
,
2016
, “
Stochastic Modelling of Perfect Inspection and Repair Actions for Leak-Failure Prone Internal Corroded Pipelines
,”
Eng. Fail. Anal.
, 60, pp.
40
56
.10.1016/j.engfailanal.2015.11.030
104.
Wang
,
Y.
,
Su
,
C.
, and
Xie
,
M.
,
2020
, “
Remaining Useful Life Prediction of Corroded Oil Pipelines Based on Binary Inverse Gaussian Process,” Dongnan Daxue Xuebao (Ziran Kexue Ban)
,”
J. Southeast Univ. (Natural Sci. Ed.)
, 50(6), pp. 1038–1044.10.3969/j.issn.1001-0505.2020.06.007
105.
Goel
,
T.
, and
Murugan
,
R.
,
2020
, “
Deep Convolutional - Optimized Kernel Extreme Learning Machine Based Classifier for Face Recognition
,”
Comput. Electr. Eng.
,
85
, p.
106640
.10.1016/j.compeleceng.2020.106640
106.
Erzina
,
M.
,
Trelin
,
A.
,
Guselnikova
,
O.
,
Dvorankova
,
B.
,
Strnadova
,
K.
,
Perminova
,
A.
,
Ulbrich
,
P.
,
et al.
,
2020
, “
Precise Cancer Detection Via the Combination of Functionalized SERS Surfaces and Convolutional Neural Network With Independent Inputs
,”
Sens. Actuators, B Chem.
,
308
, p.
127660
.10.1016/j.snb.2020.127660
107.
Chen
,
Q.
,
Ling
,
Z.
,
Jiang
,
H.
,
Zhu
,
X.
,
Wei
,
S.
, and
Inkpen
,
D.
,
2017
, “
Enhanced LSTM for Natural Language Inference
,”
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vancouver, BC, Canada, Apr. 26.10.18653/v1/P17-1152
108.
Cheng
,
Y.
,
Zhu
,
H.
,
Wu
,
J.
, and
Shao
,
X.
,
2019
, “
Machine Health Monitoring Using Adaptive Kernel Spectral Clustering and Deep Long Short-Term Memory Recurrent Neural Networks
,”
IEEE Trans. Ind. Inf.
, 15(2), pp.
987
997
.10.1109/TII.2018.2866549
109.
Hoang
,
D. T.
, and
Kang
,
H. J.
,
2019
, “
A Survey on Deep Learning Based Bearing Fault Diagnosis
,”
Neurocomputing
,
335
, pp.
327
335
.10.1016/j.neucom.2018.06.078
110.
Liu
,
C.
,
Yao
,
R.
,
Zhang
,
L.
, and
Liao
,
Y.
,
2019
, “
Attention Based Echo State Network: A Novel Approach for Fault Prognosis
,”
ICMLC '19: Proceedings of the 2019 11th International Conference on Machine Learning and Computing
, Feb. 22, pp.
489
493
.10.1145/3318299.3318325
111.
Verstraete
,
D.
,
Droguett
,
E.
, and
Modarres
,
M.
,
2019
, “
A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics
,”
Sensor (Switzerland)
,
20
(
1
), p.
176
.10.3390/s20010176
112.
Javid
,
Y.
,
2021
, “
A bi-Objective Mathematical Model to Determine Risk-Based Inspection Programs
,”
Process Saf. Environ. Prot.
, 146, pp.
893
904
.10.1016/j.psep.2020.12.022
113.
Hassan
,
S.
,
Wang
,
J.
,
Kontovas
,
C.
, and
Bashir
,
M.
,
2022
, “
An Assessment of Causes and Failure Likelihood of Cross-Country Pipelines Under Uncertainty Using Bayesian Networks
,”
Reliab. Eng. Syst. Saf.
,
218
, p.
108171
.10.1016/j.ress.2021.108171
114.
Zhang
,
N.
, and
Si
,
W.
,
2020
, “
Deep Reinforcement Learning for Condition-Based Maintenance Planning of Multi-Component Systems Under Dependent Competing Risks
,”
Reliab. Eng. Syst. Saf.
,
203
, p.
107094
.10.1016/j.ress.2020.107094
115.
Mangalathu
,
S.
, and
Jeon
,
J.-S.
,
2019
, “
Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study
,”
J. Struct. Eng.
,
145
(
10
), p.
04019104
.10.1061/(ASCE)ST.1943-541X.0002402
116.
Park
,
K.
,
Lee
,
G.
,
Kim
,
C.
,
Kim
,
J.
,
Rhie
,
K.
, and
Lee
,
W. B.
,
2020
, “
Comprehensive Framework for Underground Pipeline Management With Reliability and Cost Factors Using Monte Carlo Simulation
,”
J. Loss Prev. Process Ind.
,
63
, pp. 1–17.10.1016/j.jlp.2019.104035
You do not currently have access to this content.