The thermal reduction of metal oxides as part of a thermochemical two-step water-splitting cycle requires the development of a high-temperature solar reactor operating at 10001500°C. Direct solar energy absorption by metal-oxide particles provides direct efficient heat transfer to the reaction site. This paper describes the experimental results of a windowed small reactor using an internally circulating fluidized bed of reacting metal-oxide particles under direct solar-simulated Xe-beam irradiation. Concentrated Xe-beam irradiation directly heats the internally circulating fluidized bed of metal-oxide particles. NiFe2O4mZrO2 (Ni-ferrite on zirconia support) particles are loaded as the working redox material and are thermally reduced by concentrated Xe-beam irradiation. In a separate step, the thermally reduced sample is oxidized back to Ni-ferrite with steam at 1000°C. The conversion efficiency of ferrite reached 44% (±1.0%), which was achieved using the reactor at 1kW of incident Xe lamp power. The effects of preheating temperature and NiFe2O4mZrO2 particle size on the performance of the reactor for thermal reduction using an internally circulating fluidized bed were evaluated.

1.
Kalogirou
,
A. S.
, 2004, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
0360-1285,
30
, pp.
231
295
.
2.
Mills
,
D.
, 2004, “
Advances in Solar Thermal Electricity Technology
,”
Sol. Energy
0038-092X,
76
, pp.
19
31
.
3.
Johnston
,
G.
,
Lovegrove
,
K.
, and
Luzzi
,
A.
, 2003, “
Optical Performance of Spherical Reflecting Elements for Use With Paraboloidal Dish Concentrators
,”
Sol. Energy
0038-092X,
74
, pp.
133
140
.
4.
Nakamura
,
T.
, 1977, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
0038-092X,
19
, pp.
467
475
.
5.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
6.
Lundberg
,
M.
, 1993, “
Model Calculations on Some Feasible Two-Step Water Splitting Processes
,”
Int. J. Hydrogen Energy
0360-3199,
18
(
5
), pp.
369
376
.
7.
Ehrensberger
,
K.
,
Frei
,
A.
,
Kuhn
,
P.
,
Oswald
,
H.
, and
Hug
,
P.
, 1995, “
Comparative Experimental Investigations of the Water-Splitting Reaction With Iron Oxide Fe1−yO and Iron Manganese Oxides (Fe1−xMnx)1−yO
,”
Solid State Ionics
0167-2738,
78
, pp.
151
160
.
8.
Ehrensberger
,
K.
,
Kuhn
,
P.
,
Shklover
,
V.
, and
Oswald
,
H.
, 1996, “
Temporary Phase Segregation Processes During the Oxidation of (Fe0.7Mn0.3)0.99O in N2‐H2O Atmosphere
,”
Solid State Ionics
0167-2738,
90
, pp.
75
81
.
9.
Tamaura
,
T.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Ehrensberger
,
K.
, 1995, “
Production of Solar Hydrogen by a Novel, 2-Step, Water-Splitting Thermochemical Cycle
,”
Energy
0360-5442,
20
(
4
), pp.
325
330
.
10.
Kodama
,
T.
,
Kondoh
,
Y.
,
Kiyama
,
A.
, and
Shimizu
,
K-I.
, 2003, “
Hydrogen Production by Solar Thermochemical Water-Splitting∕Methane-Reforming Process
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2003
,
Hawaii, HI
,
M. D.
Thornbloom
and
S. A.
Jones
, eds.,
ASME
,
New York
, Paper No. ISEC2003-44037.
11.
Kodama
,
T.
,
Kondoh
,
Y.
,
Yamamoto
,
R.
,
Andou
,
H.
, and
Satoh
,
N.
, 2005, “
Thermochemical Hydrogen Production by a Redox System of ZrO2-Supported Co(II)-Ferrite
,”
Sol. Energy
0038-092X,
78
,
623
631
.
12.
Gokon
,
N.
,
Mizuno
,
T.
,
Takahashi
,
S.
, and
Kodama
,
T.
, 2006, “
A Two-Step Water Splitting With Ferrite Particles and Its New Reactor Concept Using an Internally Circulating Fluidized-Bed
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2006
,
Denver, CO
,
J. H.
Morehouse
and
M.
Krarti
, eds.,
ASME
,
New York
, Paper No. ISEC2006-99063.
13.
Kodama
,
T.
,
Gokon
,
N.
, and
Yamamoto
,
R.
, 2008, “
Thermochemical Two-Step Water Splitting by ZrO2-Supported NixFe3−xO4 for Solar Hydrogen Production
,”
Sol. Energy
0038-092X,
82
(
1
), pp.
73
79
.
14.
Ishihara
,
H.
,
Kaneko
,
H.
,
Yokoyama
,
T.
,
Fuse
,
A.
, and
Hasegawa
,
N.
, 2005, “
Hydrogen Production Through Two-Step Water Splitting Using YSZ (Ni, Fe) System for Solar Hydrogen Production
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2005
,
Orlando, FL
,
ASME
,
New York
, Paper No. ISEC2005-76151.
15.
Kodama
,
T.
,
Nakamuro
,
Y.
,
Mizuno
,
T.
, and
Yamamoto
,
R.
, 2004, “
A Two-Step Thermochemical Water Splitting by Iron-Oxide on Stabilized Zirconia
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2004
,
Portland, OR
,
ASME
,
New York
, Paper No. ISEC2004-65063.
16.
Gokon
,
N.
,
Mizuno
,
T.
,
Nakamuro
,
Y.
, and
Kodama
,
T.
, 2006, “
Iron-Containing YSZ (Yttrium-Stabilized Zirconia) System for a Two-Step Thermochemical Water Splitting
,”
13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies (SolarPACES) 2006
,
Sevilla, Spain
,
M.
Romero
,
D.
Martinez
,
V.
Ruiz
,
M.
Silva
, and
M.
Brown
, eds.,
SolarPACES
,
Spain
, Paper No. B2-S12.
17.
Gokon
,
N.
,
Mizuno
,
T.
,
Nakamuro
,
Y.
, and
Kodama
,
T.
, 2008, “
Iron-Containing Yttria-Stabilized Zirconia System for Two-Step Thermochemical Water Splitting
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
011018
.
18.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A. M.
, 2005, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
0038-092X,
79
,
409
421
.
19.
Roeb
,
M.
,
Sattler
,
C.
,
Klüser
,
R.
,
Monnerie
,
N.
,
Oliveira
,
L.
,
Konstandopoulos
,
A. G.
,
Agrafiotis
,
C.
,
Zaspalis
,
V. T.
,
Nalbandian
,
L.
,
Steele
,
A.
, and
Stobbe
,
P.
, 2005, “
Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2005
,
Orlando, FL
,
ASME
,
New York
, Paper No. ISEC2005-76126.
20.
Diver
,
R. B.
,
Millar
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
, 2006, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2006
,
Denver, CO
,
J. H.
Morehouse
and
M.
Krarti
, eds.,
ASME
,
New York
, Paper No. ISEC2006-99147.
21.
Millar
,
J. E.
,
Evans
,
L. R.
,
Stuecker
,
J. N.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Diver
,
R. B.
, 2006, “
Materials Development for the CR5 Solar Thermochemical Heat Engine
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2006
,
Denver, CO
,
J. H.
Morehouse
and
M.
Krarti
, eds.,
ASME
,
New York
, Paper No. ISEC2006-99152.
22.
Kaneko
,
H.
,
Fuse
,
A.
,
Miura
,
T.
,
Ishihara
,
H.
, and
Tamaura
,
Y.
, 2006, “
Two-Step Water Splitting With Concentrated Solar Heat Using Rotary-Type Solar Furnace
,”
13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies (SolarPACES) 2006
,
Sevilla, Spain
,
M.
Romero
,
D.
Martinez
,
V.
Ruiz
,
M.
Silva
, and
M.
Brown
, eds.,
SolarPACES
,
Spain
, Paper No. B2-S10.
23.
Kodama
,
T.
,
Enomoto
,
S.
,
Hatamachi
,
T.
, and
Gokon
,
N.
, 2006, “
Internally Circulating Fluidized Bed for Direct Irradiation of Reacting Particles
,”
13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies (SolarPACES) 2006
,
Sevilla, Spain
,
M.
Romero
,
D.
Martinez
,
V.
Ruiz
,
M.
Silva
, and
M.
Brown
, eds.,
SolarPACES
,
Spain
, Paper No. A8-S1.
24.
Segal
,
A.
, and
Epstein
,
M.
, 2000, “
The Optics of the Solar Tower Reflector
,”
Sol. Energy
0038-092X,
69
, pp.
229
241
.
25.
Segal
,
A.
, and
Epstein
,
M.
, 2003, “
Solar Ground Reformer
,”
Sol. Energy
0038-092X,
75
, pp.
479
490
.
26.
Abe
,
M.
,
Tanno
,
Y.
, and
Tamaura
,
Y.
, 1985, “
Direct Formation of Ferrite Film in Wet Process
,”
J. Appl. Phys.
0021-8979,
57
(
1
), pp.
3795
3797
.
27.
Tamaura
,
Y.
,
Abe
,
M.
, and
Itoh
,
T.
, 1987, “
Magnetic Thin Film Formation Reaction of Ferrite in Aqueous Solution
,”
Nippon Kagaku Kaishi
0369-4577,
11
, pp.
1980
1987
.
28.
Wen
,
C. Y.
, and
Yu
,
Y. H.
, 1966, “
A Generalized Method for Predicting the Minimum Fluidization Velocity
,”
AIChE J.
0001-1541,
12
(
3
), pp.
610
612
.
29.
Chandel
,
M. K.
, and
Alappat
,
B. J.
, 2006, “
Pressure Drop and Gas Bypassing in Recirculating Fluidized Beds
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
1489
1499
.
30.
Zene
,
F. A.
, and
Weil
,
N. A.
, 1958, “
Theoretical-Empirical Approach to the Mechanism of Particle Entrainment From Fluidized Beds
,”
AIChE J.
0001-1541,
4
, pp.
472
479
.
31.
Geldart
,
D.
, 1973, “
Types of Gas Fluidization
,”
Powder Technol.
0032-5910,
7
, pp.
285
292
.
32.
Ma
,
X.
,
Honda
,
Y.
,
Nakagawa
,
N.
, and
Kato
,
K.
, 1996, “
Elutriation of Fine Powders From a Fluidized Bed of a Binary Particle-Mixture
,”
J. Chem. Eng. Jpn.
0021-9592,
29
(
2
), pp.
330
335
.
You do not currently have access to this content.