The solar chimney power facility has the potential to become a valuable technology for renewable energy production. Its financial viability depends on a thorough understanding of the processes affecting its performance, particularly because of the large startup costs associated with facility design and construction. This paper describes the potential impacts on plant capacity resulting from cloud formation within or downwind of the solar chimney. Several proposed modifications to the basic concept of the solar chimney power facility have the potential to cause significant additions of water vapor to the air passing through the collector. As the air continues up through and out of the chimney, this excess water can condense to form cloud. This possibility is explored using a cloud parcel model initialized to simulate the range of expected operating conditions for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities is simulated for each of four seasonal representations and three levels of water vapor enhancement. Both adiabatic environments and the effects of entrainment are considered. The results indicate that for very high levels of water vapor, enhancement cloud formation within the chimney is likely; at more moderate levels of water vapor enhancement, the likelihood of plume formation is difficult to fully assess as the results depend strongly on the choice of entrainment rate. Finally, the impacts of these outcomes on facility capacity are estimated.

1.
Schlaich
,
J.
,
Bergermann
,
R.
,
Schiel
,
W.
, and
Weinrebe
,
G.
, 2005, “
Design of Commercial Solar Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
(
1
), pp.
117
124
.
2.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
, 1983, “
Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Sol. Energy
0142-5919,
2
, pp.
3
20
.
3.
Haaf
,
W.
, 1984, “
Solar Chimneys Part II: Preliminary Test Results From the Manzanares Pilot Plant
,”
Int. J. Sol. Energy
0142-5919,
2
, pp.
141
161
.
4.
Gannon
,
A. J.
, and
von Backström
,
T. W.
, 2000, “
Solar Chimney Cycle Analysis With System Loss and Solar Collector Performance
,”
ASME J. Sol. Energy Eng.
0199-6231,
122
(
3
), pp.
133
137
.
5.
Bernardes
,
M. A. D. S.
,
Voß
,
A.
, and
Weinrebe
,
G.
, 2003, “
Thermal and Technical Analyses of Solar Chimneys
,”
Sol. Energy
0038-092X,
75
(
6
), pp.
511
524
.
6.
Dai
,
Y. J.
,
Huang
,
H. B.
, and
Wang
,
R. Z.
, 2003, “
Case Study of Solar Chimney Power Plants in Northwestern Regions of China
,”
Renewable Energy
0960-1481,
28
(
8
), pp.
1295
1304
.
7.
EnviroMission, Ltd.
, 2005, Annual Report No., ACN 094963238.
8.
Kröger
,
D. G.
, and
Blaine
,
D.
, 1999, “
Analysis of the Driving Potential of a Solar Chimney Power Plant
,”
S. Afr.Inst. Mech. Eng. R&D J.
0257-9669,
15
(
3
),
85
94
.
9.
Ninic
,
N.
, 2006, “
Available Energy of the Air in Solar Chimneys and the Possibility of Its Ground-Level Concentration
,”
Sol. Energy
0038-092X,
80
, pp.
804
811
.
10.
Nenes
,
A.
,
Ghan
,
S.
,
Abdul-Razzak
,
H.
,
Chuang
,
P. Y.
, and
Seinfeld
,
J. H.
, 2001, “
Kinetic Limitation on Cloud Droplet Formation and Impact on Cloud Albedo
,”
Tellus, Ser. B
0280-6509,
53
, pp.
133
149
.
11.
Pruppacher
,
H. R.
, and
Klett
,
J. D.
, 1997,
Microphysics of Clouds and Precipitation
,
Kluwer
,
Dordrecht
, Chap. 12.
12.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
, 1998,
Atmospheric Chemistry and Physics
,
Wiley
,
New York
, Chap. 15.
13.
Nenes
,
A.
,
Charlson
,
R. J.
,
Facchini
,
M. C.
,
Kulmala
,
M.
,
Laaksonen
,
A.
, and
Seinfeld
,
J. H.
, 2002, “
Can Chemical Effects on Cloud Droplet Number Rival the First Indirect Effect?
,”
Geophys. Res. Lett.
0094-8276,
29
(
17
), Article No.
1848
.
14.
Rissman
,
T. A.
,
Nenes
,
A.
, and
Seinfeld
,
J. H.
, 2004, “
Chemical Amplification (or Dampening) of the Twomey Effect: Condition Derived from Droplet Activation Theory
,”
J. Atmos. Sci.
0022-4928,
61
(
8
), pp.
919
930
.
15.
Lance
,
S.
,
Nenes
,
A.
, and
Rissman
,
T. A.
, 2004, “
Chemical and Dynamical Effects on Cloud Droplet Number: Implications for Estimates of the Aerosol Indirect Effect
,”
J. Geophys. Res.
0148-0227,
109
,
D22209
.
16.
Jensen
,
M. P.
, and
Del Genio
,
A. D.
, 2006, “
Factors Limiting Convective Cloud-Top Height at the ARM Nauru Island Climate Research Facility
,”
J. Clim.
0894-8755,
19
(
10
), pp.
2105
2117
.
17.
Jaenicke
,
R.
, 1998, “
Atmospheric Aerosol Size Distribution
,”
Atmospheric Particles
,
R. M.
Harrison
and
R. E.
van Griecken
eds.
Wiley
,
New York
, pp.
1
29
.
18.
Young
,
K. C.
, 1993,
Microphysical Processes in Clouds
,
Oxford University Press
,
New York
, Chap. 9.
You do not currently have access to this content.