A thermochemical two-step water-splitting cycle using a redox system of iron-based oxides or ferrites is one of the promising processes for converting solar energy into clean hydrogen in sunbelt regions. An iron-containing yttrium-stabilized zirconia (YSZ) or Fe-YSZ is a promising working redox material for the two-step water-splitting cycle. Fe2+-YSZ is formed by a high-temperature reaction between YSZ and Fe3O4 supported on the YSZ at 1400°C in an inert atmosphere. Fe2+-YSZ reacts with steam and generates hydrogen at 10001100°C to form Fe3+-YSZ that is reactivated by thermal reduction in a separate step at temperatures above 1400°C under an inert atmosphere. In the present study, ceramic foam coated with Fe-YSZ particles is examined as the thermochemical water-splitting device to be used in a solar directly irradiated receiver/reactor system. The Fe-YSZ particles were coated on an Mg-partially stabilized zirconia foam disk, and the foam device was tested during the two-step water-splitting cycle; this was performed alternately at temperatures between 1100°C and 1400°C. The foam device was irradiated by concentrated visible light from a sun simulator at a peak flux density of 925kW/m2 and an average flux density of 415kW/m2 (total power input on the surface of the foam was 0.296 kW) in a N2 gas stream; subsequently, it was reacted with steam at 1100°C while heating by an infrared furnace. Hydrogen successfully continued to be produced in the repeated cycles.

1.
Bilgen
,
E.
, and
Joels
,
R.
, 1985, “
An Assessment of Solar Hydrogen Production Using the Mark 13 Hybrid Process
,”
Int. J. Hydrogen Energy
0360-3199,
10
, pp.
143
155
.
2.
Onuki
,
K.
,
Shimizu
,
S.
,
Nakajima
,
H.
,
Fujita
,
S.
,
Ikezoe
,
Y.
,
Sato
,
S.
, and
Machi
,
S.
, 1990, “
Studies on an Iodine-Sulfur Process for Thermochemical Hydrogen Production
,”
Proceedings of Eighth World Hydrogen Energy Conference
, Vol.
2
, Hawaii, pp.
547
556
.
3.
Sakurai
,
M.
,
Bilgen
,
E.
,
Tsutsumi
,
A.
, and
Yoshida
,
K.
, 1996, “
Solar UT-3 Thermochemical Cycle for Hydrogen Production
,”
Sol. Energy
0038-092X,
57
, pp.
51
58
.
4.
Funk
,
J. E.
, 2001, “
Thermochemical Hydrogen Production: Past and Present
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
185
190
.
5.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
6.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
7.
Nakamura
,
T.
, 1977, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
0038-092X,
19
, pp.
467
475
.
8.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
, 2006, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy
0038-092X,
80
, pp.
500
511
.
9.
Müller
,
R.
,
Scunk
,
L.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2006, “
Solar Thermal Dissociation of Zinc Oxide in a Direcly-Irradiagted Rotary Reactor
,”
Proceedings of 13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Seville, Spain.
10.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A. M.
, 2005, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
0038-092X,
79
, pp.
409
421
.
11.
Roeb
,
M.
,
Sattler
,
C.
,
Klüser
,
R.
,
Monnerie
,
N.
,
de Oliveira
,
L.
,
Konstandopoulos
,
A. G.
,
Agrafiotis
,
C.
,
Zaspalis
,
V. T.
,
Nalbandian
,
L.
,
Steele
,
A.
, and
Stobbe
,
P.
, 2006, “
Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
125
133
.
12.
Agrafiotis
,
C. C.
,
Lorentzou
,
S.
,
Pagkoura
,
C.
,
Kostoglou
,
M.
, and
Konstandopoulos
,
A. G.
, “
Advanced Monolithic Reactors for Hydrogen Generation From Solar Water Splitting
,”
Proceedings of 13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Seville, Spain.
13.
Gokon
,
N.
,
Mizuno
,
T.
,
Takahashi
,
S.
, and
Kodama
,
T.
, 2006, “
A Two-Step Water Splitting With Ferrite Particles and Its New Reactor Concept Using an Internally Circulating Fluidized-Bed
,”
Proceedings of the ASME Solar Energy Division, International Solar Energy Conference (ISEC)
, Denver, CO.
14.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegal
,
N. P.
, and
Hogan
,
R. E.
, 2006, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
Proceedings of the ASME Solar Energy Division, International Solar Energy Conference (ISEC)
, Denver, CO.
15.
Miller
,
J. E.
,
Evans
,
L. R.
,
Stuecker
,
J. N.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Diver
,
R. B.
, 2006, “
Materials Development for the CR5 Solar Thermochemical Heat Engine
,”
Proceedings of the ASME Solar Energy Division, International Solar Energy Conference (ISEC)
, Denver, CO.
16.
James
,
D. L.
,
Siegel
,
N. P.
,
Diver
,
R. B.
,
Boughton
,
B. D.
, and
Hogan
,
R. E.
, “
Numerical Modeling Of Solar Thermo-Chemical Water-Splitting Reactor
,”
Proceedings of the ASME Solar Energy Division, International Solar Energy Conference (ISEC)
, Denver, CO.
17.
Kodama
,
T.
,
Kondoh
,
Y.
,
Kiyama
,
A.
, and
Shimizu
,
K. -I.
, 2003, “
Hydrogen Production by Solar Thermochemical Water-Splitting/Methane-Reforming Process
,”
Proceedings of ASME International Solar Energy Conference (ISEC) 2003
, Hawaii,
M. D.
Thornbloom
, and
S. A.
Jones
, eds.,
ASME International
,
New York
.
18.
Kodama
,
T.
,
Kondoh
,
Y.
,
Yamamoto
,
R.
,
Andou
,
H.
, and
Satoh
,
N.
, 2005, “
Thermochemical Hydrogen Production by a Redox System of ZrO2-Supported Co(II)-Ferrite
,”
Sol. Energy
0038-092X,
78
, pp.
623
631
.
19.
Kodama
,
T.
,
Nakamuro
,
Y.
,
Mizuno
,
T.
, and
Yamamoto
,
R.
, 2004, “
A Two-Step Thermochemical Water Splitting By Iron-Oxide on Stabilized Zirconia
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
3
7
.
20.
Gokon
,
N.
,
Mizuno
,
T.
,
Nakamuro
,
Y.
, and
Kodama
,
T.
, 2006, “
Iron-Containing YSZ (Yttrium-Stabilized Zirconia) System for a Two-Step Thermochemical Water Splitting
,”
Proceedings of 13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Seville, Spain.
21.
Arroyave
,
R.
,
Kaufman
,
L.
, and
Eagar
,
T.
, 2002, “
Thermodynamic Modeling of the Zr–O System
,”
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
0364-5916,
26
(
1
), pp.
95
118
.
You do not currently have access to this content.