An important aspect in wind-turbine technology nowadays is to reduce the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid-structure interaction process. A fundamental step in that direction is the implementation of structural models capable of capturing the complex features of innovative prototype blades, so that they can be tested at realistic full-scale conditions with a reasonable computational cost. To this end, we developed a code based on a modified implementation of the variational-asymptotic beam sectional (VABS) technique proposed by Hodges et al. VABS has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam, allowing accurate modeling of the 3D structure of the blade as a 1D finite-element problem. In this paper, we report some recent results we have obtained by applying our code to full-scale composite laminate wind-turbine blades, analyzing the fundamental vibrational modes and the stress load in normal operational conditions.

1.
de Vries
,
E.
, 2005, “
Thinking Bigger: Are There Limits to Turbine Size?
,”
Renewable Energy World
1462-6381,
8
(
3
), pp.
42
55
.
2.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Vousitas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
, 2006, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
0376-0421,
42
, pp.
285
330
.
3.
Hodges
,
D. H.
,
Atilgan
,
A. R.
,
Cesnik
,
C. E. S.
, and
Fulton
,
M. V.
, 1992, “
On a Simplified Strain Energy Function for Geometrically Nonlinear Behaviour of Anisotropic Beams
,”
Composites Eng.
0961-9526,
2
, pp.
513
526
.
4.
Yu
,
W.
,
Hodges
,
D. H.
,
Volovoi
,
V.
, and
Cesnik
,
C. E. S.
, 2002, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
5101
5121
.
5.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
, 1995, “
Stiffness Constants for Composite Beams Including Large Initial Twist and Curvature Effects
,”
Appl. Mech. Rev.
0003-6900,
48
(
11S
), pp.
S61
S67
.
6.
Hodges
,
D. W.
, 2006,
Nonlinear Composite Beam Theory
,
AIAA
,
Reston, VA
.
7.
Popescu
,
B.
, and
Hodges
,
D. H.
, 2000, “
On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
535
558
.
8.
Yu
,
W.
, and
Hodges
,
D. H.
, 2005, “
Generalized Timoshenko Theory of the Variational Asymptotic Beam Sectional Analysis
,”
J. Am. Helicopter Soc.
0002-8711,
50
, pp.
46
55
.
9.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
, 1997, “
VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling
,”
J. Am. Helicopter Soc.
0002-8711,
42
, pp.
27
38
.
10.
Hodges
,
D. H.
, and
Yu
,
W.
, 2007, “
A Rigorous, Engineering-Friendly Approach for Modeling Realistic, Composite Rotor Blades
,”
Wind Energy
1095-4244,
10
, pp.
179
193
.
11.
Popescu
,
B.
,
Hodges
,
D. H.
, and
Cesnik
,
C. E. S.
, 2000, “
Obliqueness Effects in Asymptotic Cross-Sectional Analysis of Composite Beams
,”
Comput. Struct.
0045-7949,
76
, pp.
533
543
.
12.
Berdichevsky
,
V. L.
, 1979, “
Variational-Asymptotic Method of Constructing a Theory of Shells
,”
J. Appl. Math. Mech.
0021-8928,
43
, pp.
664
687
.
13.
Cesnik
,
C. E. S.
,
Sutyrin
,
V. G.
, and
Hodges
,
D. H.
, 1996, “
Refined Theory of Composite Beams: The Role of Short-Wavelength Extrapolation
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
1387
1408
.
14.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
15.
Ponta
,
F. L.
, 2006, “
The KLE Method: A Velocity-Vorticity Formulation for the Navier–Stokes Equations
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
1031
1038
.
16.
Hodges
,
D. H.
, 2003, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
0001-1452,
41
, pp.
1131
1137
.
17.
Patil
,
M. J.
, and
Althoff
,
M.
, 2006, “
Energy-Consistent, Galerkin Approach for the Nonlinear Dynamics of Beams Using Mixed, Intrinsic Equations
,”
Proceedings of the AIAA/ASME/ASCE/AHE/ASC Structures, Structural Dynamics and Material Conference
, Reston, VA, pp.
1
9
.
18.
Karniadakis
,
G. E.
,
Bullister
,
E. T.
, and
Patera
,
A. T.
, 1985, “
A Spectral Element Method for Solution of Two- and Three-Dimensional Time-Dependent Incompressible Navier–Stokes Equations
,”
Finite Element Methods for Nonlinear Problems
,
Springer-Verlag
,
New York
, p.
803
.
19.
Patera
,
A. T.
, 1984, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
0021-9991,
54
, pp.
468
488
.
20.
Hodges
,
D. H.
, 1990, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
0020-7683,
26
, pp.
1253
1273
.
21.
Timmer
,
W. A.
, and
van Rooij
,
R. P. J. O. M.
, 2003, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
Proceedings of the 41st Aerospace Sciences Meeting and Exhibit
, Reno, NV.
22.
Composites
,
T. P. I.
, 2002, “
Parametric Study for Large Wind Turbine Blades
,”Sandia National Laboratories, Report No. SAND2002-2519.
23.
Griffin
,
D. A.
, 2002, “
Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades
,” Sandia National Laboratories, Report No. SAND2002-1879.
24.
Otero
,
A. D.
, and
Ponta
,
F. L.
, 2004, “
Finite Element Structural Study of the VGOT Wind Turbine
,”
Int. J. Global Energy Issues
0954-7118,
21
, pp.
221
235
.
25.
Otero
,
A. D.
, and
Ponta
,
F. L.
, 2009, “
On the Structural Behaviour of Variable-Geometry Oval-Trajectory Darrieus Wind Turbines
,”
Renewable Energy
0960-1481,
34
(
3
), pp.
827
832
.
26.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
, 2002,
Wind Energy Explained: Theory, Design and Application
,
Wiley
,
Chichester, UK
.
27.
Griffin
,
D. A.
, 2002, “
Evaluation of Design Concepts for Adaptive Wind Turbine Blades
,” Sandia National Laboratories, Report No. SAND2002-2424.
28.
Locke
,
J.
, and
Contreras Hidalgo
,
I.
, 2002, “
The Implementation of Braided Composite Materials in the Design of a Bend-Twist Coupled Blade
,” Sandia National Laboratories, Report No. SAND2002-2425.
29.
Ponta
,
F. L.
, 2005, “
The Kinematic Laplacian Equation Method
,”
J. Comput. Phys.
0021-9991,
207
, pp.
405
426
.
You do not currently have access to this content.