Solar thermochemical processes, such as solar gasification of coal, require the development of a high temperature solar reactor operating at temperatures above 1000°C. Direct solar energy absorption by reacting coal particles provides efficient heat transfer directly to the reaction site. In this work, a windowed reactor prototype designed for the beam-down optics was constructed at a laboratory scale and demonstrated for CO2 gasification of coal coke using concentrated visible light from a sun-simulator as the source of energy. Peak conversion of light energy to chemical fuel (CO) of 14% was obtained by irradiating a fluidized bed of 500710μm coal coke size fraction with a power input of about 1 kW and a CO2 flow-rate of 6.5dm3min1 at normal conditions.

1.
Gregg
,
D.
,
Taylor
,
R.
,
Campbell
,
J.
,
Taylor
,
J.
, and
Cotton
,
A.
, 1980, “
Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixtures
,”
Sol. Energy
0038-092X,
25
, pp.
353
364
.
2.
Taylor
,
R.
,
Berjoan
,
R.
, and
Coutures
,
J.
, 1983, “
Solar Gasification of Carbonaceous Materials
,”
Sol. Energy
0038-092X,
30
(
6
), pp.
513
525
.
3.
Epstein
,
M.
,
Spiewak
,
I.
,
Funken
,
K.
, and
Ortner
,
J.
, 1994, “
Review of the Technology for Solar Gasification of Carbonaceous Materials
,”
Proceedings of the Solar Engineering Conference, The ASME/JSME/JSES International Solar Energy Conference
, San Francisco, CA, pp.
79
91
.
4.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
5.
Ben-Zvi
,
R.
, and
Karni
,
J.
, 2007, “
Simulation of a Volumetric Solar Reformer
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
197
204
.
6.
Hunt
,
A.
,
Ayer
,
J.
,
Hull
,
P.
,
Miller
,
F.
,
Noring
,
J.
, and
Worth
,
D.
, 1986, “
Solar Radiant Heating of Gas-Particle Mixtures
,” Lawrence Berkeley Laboratory Report No. LBL-22743.
7.
Meier
,
A.
,
Ganz
,
J.
, and
Steinfeld
,
A.
, 1996, “
Modeling of a Novel High-Temperature Solar Chemical Reactor
,”
Chem. Eng. Sci.
0009-2509,
51
(
11
), pp.
2181
2186
.
8.
Miller
,
J. F.
, and
Koenigsdorff
,
R. W.
, 2000, “
Thermal Modeling of a Small-Particle Solar Central Receiver
,”
ASME J. Sol. Energy Eng.
0199-6231,
122
, pp.
23
29
.
9.
Bertocchi
,
R.
,
Karni
,
J.
, and
Kribus
,
A.
, 2004, “
A High Temperature Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, p.
826
.
10.
Klein
,
H. H.
,
Rubin
,
R.
, and
Karni
,
J.
, 2006, “
Generation of a Radiation Absorbing Medium for a Solar Receiver by Elutriation of Fine Particles From a Spouted Bed
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
406
408
.
11.
Chen
,
H.
,
Chen
,
Y.
,
Hsieh
,
H. -T.
, and
Siegel
,
N.
, 2007, “
Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
160
170
.
12.
Z’Graggen
,
A.
,
Haueter
,
P.
,
Trommer
,
D.
,
Romero
,
M.
,
de Jesus
,
J. C.
, and
Steinfeld
,
A.
, 2006, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modeling
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
797
811
.
13.
Segal
,
A.
, and
Epstein
,
M.
, 2001, “
The Optics of the Solar Tower Reflector
,”
Sol. Energy
0038-092X,
69
, pp.
229
241
.
14.
Segal
,
A.
, and
Epstein
,
M.
, 2003, “
Solar Ground Reformer
,”
Sol. Energy
0038-092X,
75
, pp.
479
490
.
15.
Kodama
,
T.
,
Funatoh
,
A.
,
Shimizu
,
K.
, and
Kitayama
,
Y.
, 2001, “
Kinetics of Metal Oxide-Catalyzed CO2 Gasification of Coal in a Fluidized-Bed Reactor for Solar Thermochemical Process
,”
Energy Fuels
0887-0624,
15
, pp.
1200
1206
.
16.
Levenspiel
,
O.
, 1979,
Chemical Reaction Engineering
,
Wiley
,
New York
.
You do not currently have access to this content.