The present study reports a novel concept of a direct solar thermal collector that harnesses the localized surface plasmon of metallic nanoparticles suspended in water. At the plasmon resonance frequency, the absorption and scattering from the nanoparticle can be greatly enhanced via the coupling of the incident radiation with the collective motion of electrons in metal. However, the surface plasmon induces strong absorption with a sharp peak due to its resonant nature, which is not desirable for broad-band solar absorption. In order to achieve the broad-band absorption, we propose a direct solar thermal collector that has four types of gold-nanoshell particles blended in the aquatic solution. Numerical simulations based on the Monte Carlo algorithm and finite element analysis have shown that the use of blended plasmonic nanofluids can significantly enhance the solar collector efficiency with an extremely low particle concentration (e.g., approximately 70% for a 0.05% particle volume fraction). The low particle concentration ensures that nanoparticles do not significantly alter the flow characteristics of nanofluids inside the solar collector. The results obtained from this study will facilitate the development of highly efficient solar thermal collectors using plasmonic nanofluids.

References

1.
Minardi
,
J. E.
, and
Chuang
,
H. N.
, 1975, “
Performance of a ‘Black’ Liquid Flat-Plate Solar Collector
,”
Sol. Energy
,
17
, pp.
179
183
.
2.
Duffie
,
J. A.
, and
Beckman
,
W. A.
, 1980,
Solar Thermal Engineering Processes
,
Wiley
,
New York
.
3.
Sodha
,
M.
,
Bansal
,
N. K.
, and
Singh
,
D.
, 1984, “
Analysis of a Black Liquid Flat Plate Solar Collector
,”
Int. J. Energy Res.
,
8
, pp.
31
37
.
4.
Okujagu
,
C. U.
, and
Adjepong
,
S. K.
, 1989, “
Performance of a Simple Flat Plate Solar Collector at an Equatorial Location
,”
Sol. Wind Technol.
,
6
, pp.
283
289
.
5.
Kalogirou
,
S. A.
, 2004, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
, pp.
231
295
.
6.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
, 2009, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.
7.
Kumar
,
S.
, and
Tien
,
C. L.
, 1990, “
Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film
,”
ASME J. Sol. Energy Eng.
,
112
(
4
), pp.
293
300
.
8.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
, 2009, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
, p.
041004
.
9.
Sani
,
E.
,
Barison
,
S.
,
Pagura
,
C.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Jafrancesco
,
D.
, and
Francini
,
F.
, 2010, “
Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers
,”
Opt. Express
,
18
, pp.
5179
5187
.
10.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
, 2010, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.
11.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
12.
Raether
,
H.
, 1988,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
,
Springer-Verlag
,
Berlin, Germany
.
13.
Derkacs
,
D.
,
Lim
,
S.
,
Matheu
,
P.
,
Mar
,
W.
, and
Yu
,
E. T.
, 2006, “
Improved Performance of Amorphous Silicon Solar Cells via Scattering From Surface Plasmon Polaritons in Nearby Metallic Nanopar-Ticles
,”
Appl. Phys. Lett.
,
89
,
093103
.
14.
Temple
,
T. L.
,
Mahanama
,
G. D. K.
,
Reehal
,
H. S.
, and
Bagnall
,
D. M.
, 2009, “
Influence of Localized Surface Plasmon Excitation in Silver Nanoparticles on the Performance of Silicon Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
93
(
11
), pp.
1978
1985
.
15.
Atwater
,
H. A.
, and
Polman
,
A.
, 2010, “
Plasmonics for Improved Photovoltaic Devices
,”
Nature Mater.
,
9
(
3
), pp.
205
213
.
16.
Pillai
,
S.
, and
Green
,
M. A.
, 2010, “
Plasmonics for Photovoltaic Applications
,”
Sol. Energy Mater. Sol. Cells
,
94
(
9
), pp.
1481
1486
.
17.
Prodan
,
E.
,
Radloff
,
C.
,
Halas
,
N. J.
, and
Nordlander
,
P.
, 2003, “
A Hybridization Model for the Plasmon Response of Complex Nanostructures
,”
Science
,
302
, pp.
419
422
.
18.
Xu
,
L.
,
Lee
,
B. J.
,
Hanson
,
W. L.
, and
Han
,
B.
, 2010, “
Brownian Motion Induced Dynamic Near-Field Interaction Between Quantum Dots and Plasmonic Nanoparticles in Aqueous Medium
,”
Appl. Phys. Lett.
,
96
, p.
174101
.
19.
Howell
,
J. R.
, 1998, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
120
, pp.
547
560
.
20.
Li
,
Q.
,
Lee
,
B. J.
,
Zhang
,
Z. M.
, and
Allen
,
D. W.
, 2008, “
Light Scattering of Semitransparent Sintered Polytetrafluoroethylene Films
,”
J. Biomed. Opt.
,
13
, p.
054064
.
21.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
,
Taylor & Francis Group
,
New York
.
22.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
Academic Press
,
San Diego, CA
.
23.
Lacroix
,
D.
,
Joulain
,
K.
, and
Lemonnier
,
D.
, 2005, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales
,”
Phys. Rev. B
,
72
(
6
), p.
064305
.
24.
Flannery
,
B. P.
,
Press
,
W.
,
Teukolsky
,
S.
, and
Vetterling
,
W.
, 1992,
Numerical Recipes in C
,
Press Syndicate of the University of Cambridge
,
New York
.
25.
Wang
,
L.
,
Jacques
,
S. L.
, and
Zheng
,
L.
, 1995, “
MCML-Monte Carlo Modeling of Light Transport in Multi-Layered Tissues
,”
Comput. Methods Programs Biomed.
,
47
(
2
), pp.
131
146
.
26.
Das
,
S.
,
Choi
,
S.
,
Yu
,
W.
, and
Pradeep
,
T.
, 2008,
Nanofluids: Science and Technology
,
Wiley-Interscience
,
Hoboken, NJ
.
27.
Smith
,
D. D.
, and
Fuller
,
K. A.
, 2002, “
Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres
,”
J. Opt. Soc. Am. B
,
19
(
10
), pp.
2449
2455
.
28.
Nehl
,
C.
,
Grady
,
N.
,
Goodrich
,
G.
,
Tam
,
F.
,
Halas
,
N.
, and
Hafner
,
J.
, 2004, “
Scattering Spectra of Single Gold Nanoshells
,”
Nano Lett.
,
4
(
12
), pp.
2355
2359
.
29.
Ordal
,
M.
,
Bell
,
R.
,
Alexander
,
R.
, Jr.
,
Long
,
L.
, and
Querry
,
M.
, 1985, “
Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W
,”
Appl. Opt.
,
24
(
24
), pp.
4493
4499
.
30.
Palik
,
E. D.
, and
Ghosh
,
G.
, 1998,
Handbook of Optical Constants of Solids: Five-Volume Set
,
Academic
,
San Diego, CA
.
You do not currently have access to this content.