The operational conditions of the solar-thermal receiver for a Brayton cycle engine are challenging, and lack a large body of operational data unlike steam plants. We explore the receiver's fundamental element, a pressurized tube in time varying solar flux for a series of 30 yr service missions based on hypothetical power plant designs. We developed and compared two estimation methods to predict the receiver tube lifetime based on available creep life and fatigue data for alloy 617. We show that the choice of inelastic strain model and the level of conservatism applied through design rules will vary the lifetime predictions by orders of magnitude. Based on current data and methods, a turbine inlet temperature of 1120 K is a necessary 30-yr-life-design condition for our receiver. We also showed that even though the time at operating temperature is about three times longer for fossil fuel powered (steady) operation, the damage is always lower than cyclic operation using solar power.

References

1.
Amsbeck
,
L.
,
Denk
,
T.
,
Ebert
,
M.
Gertig
,
C.
,
Heller
,
P.
,
Herrmann
,
P.
,
Jedamski
,
J.
,
John
J.
,
Pitz-Paal
,
R.
,
Prosinečki
,
T.
,
Rehn
,
J.
,
Reinalter
,
W.
, and
Uhlig
,
R.
,
2010
, “
Test of a Solar-Hybrid Microturbine System and Evaluation of Storage Deployment
,”
Proceedings of SolarPaces
,
Pirpignan
,
France
, September 21–24, Paper No. 0177.
2.
Stein
,
W.
,
Kim
,
J.-S.
,
Burton
,
A.
,
McNaughton
,
R.
,
Soo Too
,
Y. C.
,
McGregor
,
J.
,
Nakatani
,
H.
,
Tagawa
,
M.
,
Osada
,
T.
,
Okubo
,
T.
,
Kobayashi
,
K.
,
2010
, “
Design and Construction of a 200 kWe Tower Brayton Cycle Power Plant,
Proceedings of SolarPaces
,
Pirpignan
,
France
, September 21–24, Paper No. 0289.
3.
2012, “RE<C: Brayton Project Overview,” Google.org, Mountain View, CA, http://www.google.org/pdfs/google_brayton_summary.pdf
4.
Phillips
,
J.
, and
Shingledecker
,
J.
,
2011
, “
U.S. Department of Energy and Ohio Coal Development Office Advanced Ultra-Supercritical Materials Project for Boilers and Steam Turbines, Summary of Results
,”
Electric Power Research Institute, Palo Alto, CA, Report No. 1022770
.
5.
Smith
,
K. O.
,
1984
, “
Ceramic Heat Exchanger Design Methodology
,”
Argonne National Laboratory, Argonne, Report No. ANL/FE-84-6
.
6.
ASME, “2010 ASME Boiler & Pressure Vessel Code, Section III, Subsection NH, Class 1 Components in Elevated Temperature Service,” The American Society of Mechanical Engineers, Fairfield, NJ
.
7.
Google, 2012 “Brayton System Hardware Summary,” Google.org, Mountain View, http://www.google.org/pdfs/google_brayton_system_hardware.pdf
8.
Sham
,
T.-L.
, and
Walker
,
K. P.
,
2008
, “
Preliminary Development of a Unified Viscoplastic Constitutive Model for Alloy 617 With Special Reference to Long Term Creep Behavior
,”
Proceedings of 4th International Topical Meeting on High Temperature Reactor Technology
(
HTR2008
),
Washington, DC
, September 28–October 1, Vol.
2
, Paper No. HTR2008-85215, pp.
81
89
.10.1115/HTR2008-58215
9.
Special Metals Corporation, 2005 “Inconel® Alloy 617,” Publication Number SMC-029, http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf
10.
Wright
,
J. K.
,
2011
, “
Strain Rate Sensitivity of Alloy 617
,”
Very High Temperature Reactor (VHTR) R&D 4th Annual Technical Review Meeting, Albuquerque, NM, Presentation 08 Wright J—Stress
.
11.
Wright
,
J. K.
,
Carroll
,
L. J.
,
Cabet
,
C.
,
Lillo
,
T. M.
,
Benz
,
J. K.
,
Simpson
,
J. A.
,
Lloyd
,
W. R.
,
Chapman
,
J. A.
, and
Wright
,
R.N.
,
2011
, “
Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys
,”
Nucl. Eng. Des.
,
251
, pp.
252
260
.10.1016/j.nucengdes.2011.10.034
12.
Eno
,
D. R.
,
Young
,
G. A.
, and
Sham
,
T.-L.
,
2008
, “
A Unified View of Engineering Creep Parameters
,”
Proceedings of ASME Pressure Vessels and Piping Division Conference
(PVP2008),
Chicago
, July 27–31,
ASME
Paper No. 61129, pp.
777
792
.10.1115/PVP2008-61129
13.
Yukawa
,
S.
,
1991
, “
Elevated Temperature Fatigue Design Curves for Ni-Cr-Co-Mo Alloy 617
,”
The 1st JSME/ASME Joint International Conference on Nuclear Engineering
,
Tokyo
, November 4–7, pp.
1
6
.
14.
Dhalla
,
A. K.
,
1991
, “
Recommended Practices in Elevated Temperature Design: A Compendium of Breeder Reactor Experience. (1970–1987) Volume I—Current Status and Future Directions
,”
Bulletin 362, Welding Research Council
,
New York
.
15.
Corum
,
J. M.
, and
Blass
,
J. J.
,
1991
, “
Rules for Design of Alloy 617 Nuclear Components to Very High Temperatures
,”
ASME Pressure Vessel Piping
,
215
, pp.
147
153
.
16.
Wright
,
J.
, and
Sham
,
S.
,
2010
, “
Creep-Fatigue Interaction Diagram for Alloy 617 in Air at 950 °C
,”
Engineering Calculations and Analysis Report 1199, Idaho National Laboratory, Idaho Falls
, ID.
17.
Carroll
,
L. J.
,
Lloyd
,
W. R.
,
Simpson
,
J. A.
, and
Wright
,
R. N.
,
2011
, “
The Influence of Dynamic Strain Aging on Fatigue and Creep-Fatigue Characterization of Nickel-Base Solid Solution Strengthened Alloys
,”
Mater. High Temp.
,
27
(
4
), pp.
313
323
.10.3184/096034010X12928497319949
18.
Lu
,
Y. L.
,
Chen
,
L. J.
,
Wang
,
G. Y.
,
Benson
,
M. L.
,
Liaw
,
P. K.
,
Thompson
,
S. A.
,
Blust
,
J. W.
,
Browning
,
P. F.
,
Bhattacharya
,
A. K.
,
Aurrecoechea
,
J. M.
, and
Klarstrom
D. K.
,
2005
, “
Hold-Time Effects on Low-Cycle Fatigue Behavior of Haynes 230 Superalloy at High Temperatures
,”
Mater. Sci. Eng.: A
,
409
, pp.
282
291
.10.1016/j.msea.2005.05.120
19.
Carroll
,
L. J.
,
Carroll
,
M. C.
,
Cabet
,
C.
, and
Wright
,
R.N.
, “
The Development and Impact of Microstructural Damage During High Temperature Creep-Fatigue of a Nickel-Base Austenitic Alloy
,”
Int. J. Fatigue
(accepted).
20.
Jaske
,
C. E.
,
1976
, “
Thermal Fatigue of Materials and Components
,” Report No. ASTM STP 612, pp.
170
198
.
You do not currently have access to this content.