The amount and quality of the energy converted by a photovoltaic system connected to the grid can be evaluated by experimental monitoring or computer simulation. The Solar Energy Laboratory at UFRGS developed a simulation software for analysis of grid connected photovoltaic systems (FVCONECT). In order to perform a reliable simulation, it is required for the implementation of suitable mathematical models that describe the behavior of each system component. The inverter is the equipment responsible for converting DC to AC. The manufacturers provide some technical parameters for the inverters. However, electrical and thermal characteristics require mathematical models which coefficients must be obtained from specific tests. This work presents a methodology for analysis of thermal behavior of inverters. Such analysis requires experimental determination of two thermal coefficients. Energy losses due to inverters overheating can be calculated through the proposed methodology, providing a more accurate simulation of a determined photovoltaic (PV) system. The proposed methodology has been tested in several inverters, providing good results.

References

1.
Barghi Latran
,
M.
, and
Teke
,
A.
,
2015
, “
Investigation of Multilevel Multifunctional Grid Connected Inverter Topologies and Control Strategies Used in Photovoltaic Systems
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
361
376
.
2.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
,
2014
, “
Solar Photovoltaic System Modelling and Performance Prediction
,”
Renewable Sustainable Energy Rev.
,
36
, pp.
304
315
.
3.
Mellit
,
A.
,
Benghanem
,
M.
, and
Kalogirou
,
S. A.
,
2007
, “
Modeling and Simulation of a Stand-Alone Photovoltaic System Using an Adaptive Artificial Neural Network: Proposition for a New Sizing Procedure
,”
Renewable Energy
,
32
(
2
), pp.
285
313
.
4.
Fialho
,
L.
,
Melício
,
R.
,
Mendes
,
V. M. F.
,
Viana
,
S.
,
Rodrigues
,
C.
, and
Estanqueiro
,
A.
,
2014
, “
A Simulation of Integrated Photovoltaic Conversion Into Electric Grid
,”
Sol. Energy
,
110
, pp.
578
594
.
5.
Burger
,
B.
, and
Rüther
,
R.
,
2006
, “
Inverter Sizing of Grid Connected Photovoltaic Systems in the Light of Local Solar Resource Distribution Characteristics and Temperature
,”
Sol. Energy
,
80
(
1
), pp.
32
45
.
6.
Alonso-Abella
,
M.
, and
Chenlo-Romero
,
F.
,
2004
, “
A Model for Energy Production Estimation of PV Grid Connected Systems Based on Energetic Losses and Experimental Data. On Site Diagnosis
,”
19th European Photovoltaic Solar Energy Conference
, Paris, June 7–11, pp.
244
2450
.
7.
Sera
,
D.
,
Mathe
,
L.
,
Kerekes
,
T.
,
Spataru
,
S. V.
, and
Teodorescu
,
R.
,
2013
, “
On the Perturbe and Observe and Incremental Conductance MPPT Methods for PV Systems
,”
IEEE J. Photovoltaics
,
3
(
3
), pp.
1070
1078
.
8.
Lian
,
K. L.
,
Jhang
,
J. H.
, and
Tian
,
I. S.
,
2014
, “
A Maximum Power Point Tracking Method Based on Pertub and Observe Combined With Particle Swarm Optimization
,”
IEEE J. Photovoltaics
,
4
(
3
), pp.
626
633
.
9.
Sorensen
,
N. R.
,
Thomas
,
E. V.
,
Quintana
,
M. A.
,
Barkaszi
,
S.
,
Rosenthal
,
A.
,
Zhang
,
Z.
, and
Kurtz
,
S.
,
2013
, “
Thermal Study of Inverter Components
,”
IEEE J. Photovoltaics
,
3
(
2
), pp.
807
813
.
10.
Pablo Sanchis
,
P.
,
López
,
J.
,
Ursúa
,
A.
,
Gubía
,
E.
, and
Marroyo
,
L.
,
2007
, “
On the Testing, Characterization, and Evaluation of PV Inverters and Dynamic MPPT Performance Under Real Varying Operating Conditions
,”
Prog. Photovoltaics: Res. Appl.
,
15
(
6
), pp.
541
556
.
11.
Salas
,
V.
,
Alonso-Abella
,
M.
,
Chenlo-Romero
,
F.
, and
Olías
,
E.
,
2009
, “
Analysis of the Maximum Power Point Tracking in the Photovoltaic Grid Inverters of 5 kW
,”
Renewable Energy
,
34
(
11
), pp.
2366
2372
.
12.
Lalili
,
D.
,
Mellit
,
A.
,
Lourci
,
N.
,
Medjahed
,
B.
, and
Berkouk
,
E. M.
,
2011
, “
Input Output Feedback Linearization Control and Variable Step Size MPPT Algorithm of a Grid-Connected Photovoltaic Inverter
,”
Renewable Energy
,
36
(
12
), pp.
3282
3291
.
13.
Chen
,
W.
,
Shen
,
H.
,
Shu
,
B.
,
Qin
,
H.
, and
Deng
,
T.
,
2007
, “
Evaluation of Performance of MPPT Devices in PV Systems With Storage Batteries
,”
Renewable Energy
,
32
(
9
), pp.
1611
1622
.
14.
Decker
,
B.
,
Jahn
,
U.
,
Rindelhardt
,
U.
, and
Vaaben
,
W.
,
1992
, “
The German 1000-Roof-Photovoltaic-Programme: System Design and Energy Balance
,”
11th European Photovoltaic Solar Energy Conference
, Montreux, Switzerland, pp.
1497
1500
.
15.
Macagnan
,
M. H.
, and
Lorenzo
,
E.
,
1992
, “
On the Optimal Size of Inverters for Grid Connected PV Systems
,”
11th European Photovoltaic Solar Energy Conference
, Montreux, Switzerland, Oct. 12–16, pp.
1167
1170
.
16.
Mondol
,
J. D.
,
Yohanis
,
Y. G.
, and
Norton
,
B.
,
2007
, “
The Effect of Low Insolations Conditions and Inverter Oversizing on the Long-Term Performance of a Grid-Connected Photovoltaic System
,”
Prog. Photovoltaics: Res. Appl.
,
15
(
4
), pp.
353
368
.
17.
Schalkwijk
,
M. V.
,
Kil
,
A. J.
,
Weiden
,
T. C. J.
, and
Paes
,
P. S.
,
1997
, “
Undersizing of Inverters: Modeling and Monitoring Results of 15 PV/Inverter Units in Portugal and Netherlands
,”
14th European Photovoltaic Solar Energy Conference
, Barcelona, June 30–July 4, pp.
2229
2232
.
18.
Mondol
,
J. D.
,
Yohanis
,
Y. G.
, and
Norton
,
B.
,
2006
, “
Optimal Sizing of Array and Inverter for Grid Connected Photovoltaic Systems
,”
Sol. Energy
,
80
, pp.
1517
1539
.
19.
Chen
,
S.
,
Peng
,
L.
,
Brady
,
D.
, and
Lehman
,
B.
,
2013
, “
Determining the Optimum Grid-Connected Photovoltaic Inverter Size
,”
Sol. Energy
,
87
, pp.
96
116
.
20.
Notton
,
G.
,
Larazov
,
V.
, and
Stoyanov
,
L.
,
2010
, “
Optimal Sizing of a Grid-Connected PV System for Various PV Module Technologies and Inclinations, Inverter Efficiency Characteristics and Locations
,”
Renewable Energy
,
35
(
2
), pp.
541
554
.
21.
Fanbo
,
H.
,
Zhao
,
Z.
, and
Yuan
,
L.
,
2012
, “
Impact of Inverter Configuration on Energy Cost of Grid-Connected Photovoltaic Systems
,”
Renewable Energy
,
41
, pp.
328
335
.
22.
Luoma
,
J.
,
Kleissl
,
J.
, and
Murray
,
K.
,
2012
, “
Optimal Inverter Sizing Considering Cloud Enhancement
,”
Sol. Energy
,
86
(
1
), pp.
421
429
.
You do not currently have access to this content.