In this paper, an online estimation algorithm of the source term in a first-order hyperbolic partial differential equation (PDE) is proposed. This equation describes heat transport dynamics in concentrated solar collectors where the source term represents the received energy. This energy depends on the solar irradiance intensity and the collector characteristics affected by the environmental changes. Control strategies are usually used to enhance the efficiency of heat production; however, these strategies often depend on the source term which is highly affected by the external working conditions. Hence, efficient source estimation methods are required. The proposed algorithm is based on modulating functions method (MFM) where a moving-horizon strategy is introduced. Numerical results are provided to illustrate the performance of the proposed estimator in open-and closed-loops.

References

1.
Camacho
,
E.
,
Rubio
,
F.
,
Berenguel
,
M.
, and
Valenzuela
,
L.
,
2007
, “
A Survey on Control Schemes for Distributed Solar Collector Fields. Part I: Modeling and Basic Control Approaches
,”
Sol. Energy
,
81
(
10
), pp.
1240
1251
.
2.
Gallego
,
A.
, and
Camacho
,
E.
,
2012
, “
Estimation of Effective Solar Irradiation Using an Unscented Kalman Filter in a Parabolic-Trough Field
,”
Sol. Energy
,
86
(
12
), pp.
3512
3518
.
3.
Camacho
,
E. F.
, and
Berenguel
,
M.
,
1997
, “
Robust Adaptive Model Predictive Control of a Solar Plant With Bounded Uncertainties
,”
Int. J. Adapt. Control Signal Process.
,
11
(
4
), pp.
311
325
.
4.
Igreja
,
J.
,
Lemos
,
J.
, and
Silva
,
R. N.
,
2005
, “
Adaptive Receding Horizon Control of a Distributed Collector Solar Field
,”
44th IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Seville, Spain, Dec. 12–15, pp.
1282
1287
.
5.
Álvarez
,
J.
,
Yebra
,
L.
, and
Berenguel
,
M.
,
2009
, “
Adaptive Repetitive Control for Resonance Cancellation of a Distributed Solar Collector Field
,”
Int. J. Adapt. Control Signal Process.
,
23
(
4
), pp.
331
352
.
6.
Muniz
,
W.
,
Ramos
,
F.
, and
de Campos Velho
,
H.
,
2000
, “
Entropy- and Tikhonov-Based Regularization Techniques Applied to the Backwards Heat Equation
,”
Comput. Math. Appl.
,
40
(
8
), pp.
1071
1084
.
7.
Asiri
,
S.
,
Zayane-Aissa
,
C.
, and
Laleg-Kirati
,
T.-M.
,
2015
, “
An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation
,”
Math. Probl. Eng.
,
2015
, p.
796539
.
8.
Shinbrot
,
M.
,
1954
, “
On the Analysis of Linear and Nonlinear Dynamical Systems From Transient-Response Data
,”
National Advisory Committee for Aeronautics (NACA)
, Washington, DC, Technical Report No.
3288
.
9.
Perdreauville
,
F. J.
, and
Goodson
,
R. E.
,
1966
, “
Identification of Systems Described by Partial Differential Equations
,”
ASME J. Fluids Eng.
,
88
(
2
), pp.
463
468
.
10.
Fairman
,
F.
, and
Shen
,
D.
,
1970
, “
Parameter Identification for a Class of Distributed Systems
,”
Int. J. Control
,
11
(
6
), pp.
929
940
.
11.
Co
,
T. B.
, and
Ungarala
,
S.
,
1997
, “
Batch Scheme Recursive Parameter Estimation of Continuous-Time Systems Using the Modulating Functions Method
,”
Automatica
,
33
(
6
), pp.
1185
1191
.
12.
Liu
,
D.-Y.
, and
Laleg-Kirati
,
T.-M.
,
2015
, “
Robust Fractional Order Differentiators Using Generalized Modulating Functions Method
,”
Signal Process.
,
107
, pp.
395
406
.
13.
Liu
,
D.-Y.
,
Tian
,
Y.
,
Boutat
,
D.
, and
Laleg-Kirati
,
T.-M.
,
2015
, “
An Algebraic Fractional Order Differentiator for a Class of Signals Satisfying a Linear Differential Equation
,”
Signal Process.
,
116
, pp.
78
90
.
14.
Aldoghaither
,
A.
,
Liu
,
D.-Y.
, and
Laleg-Kirati
,
T.-M.
,
2015
, “
Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation
,”
SIAM J. Sci. Comput.
,
37
(
6
), pp.
A2813
A2839
.
15.
Shinbrot
,
M.
,
1957
, “
On the Analysis of Linear and Nonlinear Systems
,”
Trans. ASME
,
79
(
3
), pp.
547
552
.
16.
Takaya
,
K.
,
1968
, “
The Use of Hermite Functions for System Identification
,”
IEEE Trans. Autom. Control
,
13
(
4
), pp.
446
447
.
17.
Preisig
,
H.
, and
Rippin
,
D.
,
1993
, “
Theory and Application of the Modulating Function Method—I. Review and Theory of the Method and Theory of the Spline-Type Modulating Functions
,”
Comput. Chem. Eng.
,
17
(
1
), pp.
1
16
.
18.
Saha
,
D. C.
,
Rao
,
B. P.
, and
Rao
,
G. P.
,
1982
, “
Structure and Parameter Identification in Linear Continuous Lumped Systems: The Poisson Moment Functional Approach
,”
Int. J. Control
,
36
(
3
), pp.
477
491
.
19.
Patra
,
A.
, and
Unbehauen
,
H.
,
1995
, “
Identification of a Class of Nonlinear Continuous-Time Systems Using Hartley Modulating Functions
,”
Int. J. Control
,
62
(
6
), pp.
1431
1451
.
20.
Asiri
,
S.
, and
Laleg-Kirati
,
T.-M.
,
2017
, “
Modulating Functions-Based Method for Parameters and Source Estimation in One-Dimensional Partial Differential Equations
,”
Inverse Probl. Sci. Eng.
,
25
(
8
), pp.
1191
1215
.
21.
Ljung
,
L.
, and
Glad
,
T.
,
1994
, “
On Global Identifiability for Arbitrary Model Parametrizations
,”
Automatica
,
30
(
2
), pp.
265
276
.
22.
Walter
,
E.
,
2013
,
Identifiability of State Space Models: With Applications to Transformation Systems
, Vol.
46
,
Springer Science & Business Media
,
Berlin
.
23.
Camacho
,
E. F.
,
Berenguel
,
M.
, and
Rubio
,
F. R.
,
1997
,
Advanced Control of Solar Plants
,
Springer-Verlag
,
New York
.
24.
Johansen
,
T. A.
, and
Storaa
,
C.
,
2002
, “
Energy-Based Control of a Distributed Solar Collector Field
,”
Automatica
,
38
(
7
), pp.
1191
1199
.
25.
Liu
,
D.-Y.
,
Laleg-Kirati
,
T.-M.
,
Gibaru
,
O.
, and
Perruquetti
,
W.
,
2013
, “
Identification of Fractional Order Systems Using Modulating Functions Method
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
1679
1684
.
26.
Elmetennani
,
S.
, and
Kirati
,
T. M. L.
,
2016
, “
Output Feedback Control of Heat Transport Mechanisms in Parabolic Distributed Solar Collectors
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
4338
4343
.
You do not currently have access to this content.