This technical brief develops a theoretical model of all the pressure losses in the solar chimney power plant (SCPP, also called solar updraft power plant) and analyzes the pressure losses for different chimney internal stiffening appurtenance (SA) structures, different roof heights, and different collector support parameters. Results show that the exit dynamic pressure drop (EDPD) accounts for the majority of the total pressure loss (TPL), while other losses constitute only small proportions of the TPL, and the collector inlet loss is negligible. Pressure losses are strongly related to the mass flow rate, while reasonable mass flow rates excluding too low flow rates have little influence on the pressure loss ratios (PLRs, defined as the ratios of the pressure losses to the TPL) and the total effective pressure loss coefficient (TEPLC). Designing of the SA structure in view of reducing the drag, for example, using the ring stiffeners without wire spoked instead of the spoked bracing wheels (SBWs), reducing the width of the chimney internal rims of SAs, or reducing the number of SAs results in large reduction of the SA PLR and the TPL. Lower roof leading to higher velocity inside the collector, larger supports, or shorter intersupport distance leads to the increase in the support PLR. This technical brief lays a solid foundation for optimization of SCPPs in future.

References

1.
Zhou
,
X. P.
, and
Xu
,
Y. Y.
,
2016
, “
Solar Updraft Tower Gower Generation
,”
Sol. Energy
,
128
, pp.
95
125
.
2.
Zhou
,
X. P.
,
Wang
,
F.
, and
Ochieng
,
R. M.
,
2010
, “
A Review of Solar Chimney Power Technology
,”
Renewable Sustainable Energy Rev.
,
14
(8), pp.
2315
2338
.
3.
Krätzig
,
W. B.
,
2013
, “
Physics, Computer Simulation and Optimization of Thermo-Fluid mechanical Processes of Solar Updraft Power Plants
,”
Sol. Energy
,
98
(Pt. A), pp.
2
11
.
4.
Guo
,
P. H.
,
Li
,
J. Y.
,
Wang
,
Y. F.
, and
Wang
,
Y.
,
2016
, “
Evaluation of the Optimal Turbine Pressure Drop Ratio for a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
108
, pp.
14
22
.
5.
Cottam
,
P. J.
,
Duffour
,
P.
,
Lindstrand
,
P.
, and
Fromme
,
P.
,
2016
, “
Effect of Canopy Profile on Solar Thermal Chimney Performance
,”
Sol. Energy
,
129
, pp.
286
296
.
6.
Xu
,
Y. Y.
,
Zhou
,
X. P.
, and
Cheng
,
Q.
,
2015
, “
Performance of a Large-Scale Solar Updraft Power Plant in a Moist Climate
,”
Int. J. Heat Mass Transfer
,
91
, pp.
619
629
.
7.
Fathi
,
N.
,
Aleyasin
,
S. S.
, and
Vorobieff
,
P.
,
2016
, “
Numerical–Analytical Assessment on Manzanares Prototype
,”
Appl. Therm. Eng.
,
102
, pp.
243
250
.
8.
Li
,
J. L.
,
Guo
,
H. J.
, and
Huang
,
S. H.
,
2016
, “
Power Generation Quality Analysis and Geometric Optimization for Solar Chimney Power Plants
,”
Sol. Energy
,
139
, pp.
228
237
.
9.
Ming
,
T. Z.
,
Wu
,
Y.
,
de_Richter
,
R. K.
,
Liu
,
W.
, and
Sherif
,
S. A.
,
2017
, “
Solar Updraft Power Plant System: A Brief Review and a Case Study on a New System With Radial Partition Walls in Its Collector
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
472
487
.
10.
Kasaeian
,
A.
,
Mahmoudi
,
A. R.
,
Astaraei
,
F. R.
, and
Hejab
,
A.
,
2017
, “
3D Simulation of Solar Chimney Power Plant Considering Turbine Blades
,”
Energy Convers. Manage.
,
147
, pp.
55
65
.
11.
Zhou
,
X. P.
,
Xu
,
Y. Y.
, and
Hou
,
Y. X.
,
2017
, “
Effect of Flow Area to Fluid Power and Turbine Pressure Drop Factor of Solar Chimney Power Plants
,”
ASME J. Sol. Energy Eng.
,
139
(4), p.
041012
.
12.
Zhou
,
X. P.
,
Xu
,
Y. Y.
, and
Zhang
,
F.
,
2017
, “
Evaluation of Effect of Diurnal Ambient Temperature Range on Solar Chimney Power Plant Performance
,”
Int. J. Heat Mass Transfer
,
115
(Pt. A), pp.
398
405
.
13.
Hu
,
S.
,
Leung
,
D. Y. C.
, and
Chan
,
J. C. Y.
,
2017
, “
Numerical Modelling and Comparison of the Performance of Diffuser-Type Solar Chimneys for Power Generation
,”
Appl. Energy
,
204
, pp.
948
957
.
14.
Gholamalizadeh
,
E.
, and
Kim
,
M.-H.
,
2016
, “
CFD (Computational Fluid Dynamics) Analysis of a Solar-Chimney Power Plant With Inclined Collector Roof
,”
Energy
,
107
, pp.
661
667
.
15.
Cao
,
F.
,
Yang
,
T.
,
Liu
,
Q. J.
,
Zhu
,
T. Y.
,
Li
,
H. S.
, and
Zhao
,
L.
,
2017
, “
Design and Simulation of a Solar Double-Chimney Power Plant
,”
Renewable Energy
,
113
, pp.
764
773
.
16.
Zhou
,
X. P.
,
Yang
,
J. K.
,
Ochieng
,
R. M.
, and
Xiao
,
B.
,
2009
, “
Numerical Investigation of a Plume From a Power Generating Solar Chimney in an Atmospheric Cross Flow
,”
Atmos. Res.
,
91
(1), pp.
26
35
.
17.
Zhou
,
X. P.
,
Yang
,
J. K.
,
Wang
,
J. B.
,
Xiao
,
B.
,
Hou
,
G. X.
, and
Wu
,
Y. Y.
,
2009
, “
Numerical Investigation of a Compressible Flow Through a Solar Chimney
,”
Heat Transfer Eng.
,
30
(8), pp.
670
676
.
18.
Pretorius
,
J. P.
, and
Kröger
,
D. G.
,
2006
, “
Solar Chimney Power Plant Performance
,”
ASME J. Sol. Energy Eng.
,
128
(3), pp.
302
311
.
19.
Kirstein
,
C. F.
, and
von Backström
,
T. W.
,
2006
, “
Flow Through a Solar Chimney Power Plant Collector-to-Chimney Transition Section
,”
ASME J. Sol. Energy Eng.
,
128
(3), pp.
312
317
.
20.
Von Backström
,
T. W.
, and
Gannon
,
A. J.
,
2000
, “
Compressible Flow Through Solar Power Plant Chimneys
,”
ASME J. Sol. Energy Eng.
,
122
(3), pp.
138
145
.
21.
Von Backström
,
T. W.
,
Bernhardt
,
A.
, and
Gannon
,
A. J.
,
2003
, “
Pressure Drop in Solar Power Plant Chimneys
,”
ASME J. Sol. Energy Eng.
,
125
(2), pp.
165
169
.
22.
Fluri
,
T. P.
, and
von Backström
,
T. W.
,
2008
, “
Performance Analysis of the Power Conversion Unit of a Solar Chimney Power Plant
,”
Sol. Energy
,
82
(11), pp.
999
1008
.
23.
Coćić
,
A. S.
, and
Djordjević
,
V. D.
,
2016
, “
One-Dimensional Analysis of Compressible Flow in Solar Chimney Power Plants
,”
Sol. Energy
,
135
, pp.
810
820
.
24.
Harte
,
R.
,
Graffmann
,
M.
, and
Wo¨rmann
,
R.
,
2010
, “
Progress in the Structural Design of Solar Chimneys
,”
Second International Conference on Solar Chimney Power Technology
, Bochum, Germany, Sept. 28–30, pp.
145
152
.
25.
Harte
,
R.
,
Graffmann
,
M.
, and
Krätzig
,
W. B.
,
2013
, “
Optimization of Solar Updraft Chimneys by Nonlinear Response Analysis
,”
Appl. Mech. Mater.
,
283
, pp.
25
34
.
26.
Niemann
,
H.-J.
,
Lupi
,
F.
,
Hoeffer
,
R.
,
Hubert
,
W.
, and
Borri
,
C.
,
2009
, “
The Solar Updraft Power Plant: Design and Optimization of the Tower for Wind Effects
,” Fifth European and African Conference on Wind Engineering (
EACWE 5
), Florence, Italy, July 19–23, pp. 1–12.http://publications.solar-tower.org.uk/2009_Niemann_The_SUPP_Design_and_Optimization_of_the_Tower_for_Wind_Effects.pdf
27.
Schlaich, J., Bergermann, R., Schiel, W., and Weinrebe, G., 2005, “
Design of Commercial Solar Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation
,”
ASME J. Sol. Energy Eng.
,
127
(1), pp. 117–124.
28.
Von Backström
,
T. W.
,
Harte
,
R.
,
Höffer
,
R.
,
Krätzig
,
W. B.
,
Kröger
,
D. G.
,
Niemann
,
H.-J.
, and
van Zijl
,
G. P. A. G.
,
2008
, “
State and Recent Advances in Research and Design of Solar Chimney Power Plant Technology
,”
VGB PowerTech J.
,
88
(7), pp.
64
71
.http://data.solar-tower.org.uk/pdf/2008-recent-advance-design-SCPP_VGB-Powertech.pdf
29.
White
,
F. M.
,
1999
,
Fluid Mechanics
, 4th ed.,
McGraw-Hill
,
New York
.
30.
Burger, M., 2004, “
Prediction of the Temperature Distribution in Asphalt Pavement Samples
,”
Master's thesis
, University of Stellenbosch, Stellenbosch, South Africa.http://scholar.sun.ac.za/handle/10019.1/50422
31.
Hedderwick
,
R. A.
,
2001
, “
Performance Evaluation of a Solar Chimney Power Plant
,”
M.Sc. thesis
, University of Stellenbosch, Stellenbosch, South Africa.http://scholar.sun.ac.za/handle/10019.1/1983
32.
Zhou
,
X. P.
,
Bernardes
,
M. A. D. S.
, and
Ochieng
,
R. M.
,
2012
, “
Influence of Atmospheric Cross Flow on Solar Updraft Tower Inflow
,”
Energy
,
42
(1), pp.
393
400
.
33.
Pretorius
,
J. P.
,
2004
, “
Solar Tower Power Plant Performance Characteristics
,”
Master's thesis
, University of Stellenbosch, Stellenbosch, South Africa.http://scholar.sun.ac.za/bitstream/handle/10019.1/16413/pretorius_solar_2004.pdf
34.
Kröger
,
D. G.
, and
Buys
,
J. D.
,
2002
, “
Solar Chimney Power Plant Performance Characteristics
,”
Res. Dev. J. South Afr. Inst. Mech. Eng.
,
18
(2), pp.
31
36
.http://c.ymcdn.com/sites/www.saimeche.org.za/resource/collection/A9416D0D-99A6-4534-B5C5-15E8475524FE/Kr_ger_and_Buys-2002_07__600_dpi_-_2002__18_2___31-36.pdf
35.
Morris
,
H. M.
,
1963
,
Applied Hydraulics in Engineering
,
Ronald Press
,
New York
.
You do not currently have access to this content.