The evaluation of the performance and characteristics of a solar flat-plate collector (FPC) are reported for domestic and industrial requirements in the existing literature. A computer code was developed using matlab to model and evaluate the energetic and exergetic performance of a nanofluid-based FPC for steady-state and laminar conditions. The analysis was performed using practical geometry data, especially the absorber emittance, for a standard collector. Linear pressure losses in manifolds were taken into account, and a more accurate exergy factor corresponding to a correct value of 5770 K for the sun temperature was employed. The results demonstrate that copper–water nanofluid has the potential to augment the internal convection heat transfer coefficient by 76.5%, and to enhance the energetic efficiency of the collector from 70.3% to 72.1% at 4% volume concentration, when compared to the values with water. Additionally, it was revealed that copper nanofluid is capable of increasing the collector fluid's outlet temperature and decreasing the absorber plate's mean temperature by 3 K. The addition of nanoparticles to the water demonstrated a reduction in the total entropy generation by the solar FPC. Furthermore, increasing the nanoparticle size reflected a reduction in the overall performance of the solar collector.

References

1.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
, 2nd ed., Vol.
1
,
Clarendon Press
,
Oxford, UK
.
2.
Alim
,
M. A.
,
Abdin
,
Z.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Khairul
,
M. A.
, and
Rahim
,
N. A.
,
2013
, “
Analyses of Entropy Generation and Pressure Drop for a Conventional Flat Plate Solar Collector Using Different Types of Metal Oxide Nanofluids
,”
Energy Buildings
,
66
, pp.
289
296
.
3.
Chaji
,
H.
,
Ajabshirchi
,
Y.
,
Esmaeilzadeh
,
E.
,
Zeinali Heris
,
S.
,
Hedayatizadeh
,
M.
, and
Kahani
,
M.
,
2013
, “
Experimental Study on Thermal Efficiency of Flat Plate Solar Collector Using TiO2/Water Nanofluid
,”
Mod. Appl. Sci.
,
7
(
10
), pp.
60
69
.
4.
Moghadam
,
A. J.
,
Farzane-Gord
,
M.
,
Sajadi
,
M.
, and
Hoseyn-Zadeh
,
M.
,
2014
, “
Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
9
14
.
5.
Nasersharifi
,
Y.
, and
Khalaji Assadi
,
M.
,
2014
, “
Experimental Study of Efficiency Enhancement of a Flat Plate Solar Collector Using a Cu-Ag Based Nanofluid
,”
First International Conference and Exhibition on Solar Energy (ICESE)
, Tehran, Iran, May 19–20, pp. 133–141.
6.
Nasrin
,
R.
,
Salma
,
P.
, and
Ma
,
A.
,
2014
, “
Heat Transfer by Nanofluids Through a Flat Plate Solar Collector
,”
Procedia Eng.
,
90
, pp.
364
370
.
7.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Performance Analysis of a Minichannel-Based Solar Collector Using Different Nanofluids
,”
Energy Convers. Manage.
,
88
, pp.
129
138
.
8.
Said
,
Z.
,
Saidur
,
R.
,
Rahim
,
N. A.
, and
Alim
,
M. A.
,
2014
, “
Analyses of Exergy Efficiency and Pumping Power for a Conventional Flat Plate Solar Collector Using SWCNTs Based Nanofluid
,”
Energy Build.
,
78
, pp.
1
9
.
9.
Michael
,
J. J.
, and
Iniyan
,
S.
,
2015
, “
Performance of Copper Oxide/Water Nanofluid in a Flat Plate Solar Water Heater Under Natural and Forced Circulations
,”
Energy Convers. Manage.
,
95
, pp.
160
169
.
10.
Meibodi
,
S. S.
,
Kianifar
,
A.
,
Niazmand
,
H.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2015
, “
Experimental Investigation on the Thermal Efficiency and Performance Characteristics of a Flat Plate Solar Collector Using SiO2/EG–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
71
75
.
11.
Said
,
Z.
,
Sabiha
,
M. A.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Rahim
,
N. A.
,
Mekhilef
,
S.
, and
Ward
,
T. A.
,
2015
, “
Performance Enhancement of a Flat Plate Solar Collector Using Titanium Dioxide Nanofluid and Polyethylene Glycol Dispersant
,”
J. Cleaner Prod.
,
92
, pp.
343
353
.
12.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide Based Nanofluid
,”
J. Cleaner Prod.
,
133
, pp.
518
530
.
13.
Said
,
Z.
,
Saidur
,
R.
,
Sabiha
,
M. A.
,
Hepbasli
,
A.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Efficiency of a Flat Plate Solar Collector Using pH Treated Al2O3 Nanofluid
,”
J. Cleaner Prod.
,
112
(Pt. 5), pp.
3915
3926
.
14.
Arockiaraj
,
S.
, and
Jidhesh
,
P.
,
2016
, “
Effect of Nano Fluids in Solar Flat Plate Collector Systems
,”
Int. J. Eng. Comput. Sci.
,
5
(
10
), pp.
18404
18412
.
15.
Colangelo
,
G.
, and
Marco
,
M.
,
2017
, “
Numerical Simulation of Thermal Efficiency of an Innovative Al2O3 Nanofluid Solar Thermal Collector: Influence of Nanoparticles Concentration
,”
Therm. Sci.
,
21
(6 Pt. B), pp.
2769
2779
.
16.
Visconti
,
P.
,
Primiceri
,
P.
,
Costantini
,
P.
,
Colangelo
,
G.
, and
Cavalera
,
G.
,
2016
, “
Measurement and Control System for Thermo-Solar Plant and Performance Comparison Between Traditional and Nanofluid Solar Thermal Collectors
,”
Int. J. Smart Sens. Intell. Syst.
,
9
(3), pp.
1220
1242
.
17.
Verma
,
S. K.
,
Tiwari
,
A. K.
, and
Chauhan
,
D. S.
,
2017
, “
Experimental Evaluation of Flat Plate Solar Collector Using Nanofluids
,”
Energy Convers. Manage.
,
134
, pp.
103
115
.
18.
Moghadam
,
M. C.
,
Edalatpour
,
M.
, and
Solano
,
J. P.
,
2017
, “
Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041011
.
19.
Witmer
,
L.
, and
Fedkin,
,
M. V.
, 2017, “
Solar Thermal Energy for Utilities and Industry
,” The Pennsylvania State University, University Park, PA, accessed Jan. 27, 2018, https://www.e-education.psu.edu/eme811/node/508
20.
Sharma
,
K. V.
,
Sarm
,
P. K.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Kadirgama
,
K.
,
2012
, “
Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube
,”
Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom.
,
3
(
4
), p.
283
.
21.
Cabaleiro
,
D.
,
Gracia-Fernández
,
C.
,
Legido
,
J. L.
, and
Lugo
,
L.
,
2015
, “
Specific Heat of Metal Oxide Nanofluids at High Concentrations for Heat Transfer
,”
Int. J. Heat Mass Transfer
,
88
, pp.
872
879
.
22.
Xuan
,
Y. M.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(1), pp. 151–155.
23.
Ramires
,
M. L. V.
,
Carlos A
,
N. D. C.
,
Nagasaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M. J.
, and
Wakeham
,
W. A.
,
1995
, “
Standard Reference Data for the Thermal Conductivity of Water
,”
J. Phys. Chem. Ref. Data
,
24
(
3
), pp.
1377
1381
.
24.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.
25.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4410
4428
.
26.
Duffie
,
J. A.
, and
William
,
A. B.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
Wiley
,
New York
.
27.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
, San Diego, CA.
28.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
64
75
.
29.
Badescu
,
V.
,
2014
, “
How Much Work Can Be Extracted From a Radiation Reservoir?
,”
Phys. A: Stat. Mech. Appl.
,
410
, pp.
110
119
.
30.
Badescu
,
V.
,
2015
, “
Maximum Reversible Work Extraction From a Blackbody Radiation Reservoir. A Way to Closing the Old Controversy
,”
Europhys. Lett.
,
109
(
4
), p.
40008
.
31.
Landsberg
,
P. T.
, and
Badescu
,
V.
,
2000
, “
The Geometrical Factor of Spherical Radiation Sources
,”
Europhys. Lett.
,
50
(
6
), p.
816
.
32.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
.
33.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Badescu
,
V.
, and
Braimakis
,
K.
,
2016
, “
Exergy Analysis on Solar Thermal Systems: A Better Understanding of Their Sustainability
,”
Renewable Energy
,
85
, pp.
1328
1333
.
34.
Suzuki
,
A.
,
1988
, “
A Fundamental Equation for Exergy Balance on Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
110
(
2
), pp.
102
106
.
35.
Facão
,
J.
,
2015
, “
Optimization of Flow Distribution in Flat Plate Solar Thermal Collectors With Riser and Header Arrangements
,”
Sol. Energy
,
120
, pp.
104
112
.
36.
Owolabi
,
A. L.
,
Hussain H
,
A.-K.
, and
Baheta
,
A. T.
,
2016
, “
Nanoadditives Induced Enhancement of the Thermal Properties of Paraffin-Based Nanocomposites for Thermal Energy Storage
,”
Sol. Energy
,
135
, pp.
644
653
.
37.
Khalaji Assadi
,
M.
, and
Nasersharifi
,
Y.
,
2014
, “
Investigation and Measurement of Copper Nanofluid Impact on Thermal Efficiency of Solar Collectors
,”
MATEC Web of Conf.
,
13
, p. 02014.
38.
Meibodi
,
S. S.
,
Ali
,
K.
,
Omid
,
M.
, and
Somchai
,
W.
,
2016
, “
Second Law Analysis of a Nanofluid-Based Solar Collector Using Experimental Data
,”
J. Therm. Anal. Calorim.
,
126
(
2
), pp.
617
625
.
You do not currently have access to this content.