The two-step metal oxide redox cycle is a promising and thermodynamically attractive means of solar fuel production. In this work, we describe the development of a high-temperature tubular reactor in which the fundamental thermodynamic and kinetic behavior of thermochemical materials can be readily assessed. This reactor system is capable of operating at temperatures up to 1873 K, total pressures ranging from vacuum to ambient, and oxygen partial pressures (pO2) as low as 10−29 atm. Compared to off-the-shelf systems like thermogravimetric analyzers or indirect conductivity-based measurement systems, this system has three inherent benefits: (1) the flexibility to control the sample morphology (e.g., powder, packed bed, reticulated porous ceramic, or pellet), (2) the potential for a well-developed and characterized flow, and (3) the ability to readily customize the system on demand (e.g., easy integration with a steam generator to control and operate at very low pO2). The reactor system and experimental methods were validated by performing isothermal relaxation experiments with undoped ceria, wherein the sample environment was rapidly altered by stepwise changes in the delivered H2O vapor concentration, and comparing measured oxygen nonstoichiometries with accepted data available in the literature. Data were measured at temperatures from 1173 to 1473 K and pO2 from 4.54  × 10−18 to 1.02 × 10−9 atm. The measured equilibrium data displayed strong agreement with the literature and the expected trends were preserved. Kinetic data were extracted by first transforming reactant concentrations measured downstream of the reaction zone using a tanks-in-series mixing model to account for gas dispersion. Next, a mechanistic kinetic model distinguishing surface and bulk species concentrations was fit to the data to extract pertinent thermodynamic and kinetic parameters. The model assumed a two-step reaction mechanism mediated by the formation of an intermediate hydroxyl species on the surface. Activation energies and defect formation enthalpies and entropies for the forward and reverse reactions were found to be in good agreement with previous modeling efforts, providing further validation of the use of this system to explore thermodynamic and kinetic behavior of emerging thermochemical materials.

References

1.
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2014
, “
Oxygen Exchange Materials for Solar Thermochemical Splitting of H2O and CO2: A Review
,”
Mater. Today
,
17
(
7
), pp.
341
348
.
2.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
(
5
), pp.
467
475
.
3.
Miller
,
J. E.
,
McDaniel
,
A. H.
, and
Allendorf
,
M. D.
,
2014
, “
Considerations in the Design of Materials for Solar‐Driven Fuel Production Using Metal‐Oxide Thermochemical Cycles
,”
Adv. Energy Mater.
,
4
(
2
), p. 1300469.
4.
Panlener
,
R.
,
Blumenthal
,
R.
, and
Garnier
,
J.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
5.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
(
6
), pp.
611
619
.
6.
Abanades
,
S.
,
Charvin
,
P.
,
Lemont
,
F.
, and
Flamant
,
G.
,
2008
, “
Novel Two-Step SnO2/SnO Water-Splitting Cycle for Solar Thermochemical Production of Hydrogen
,”
Int. J. Hydrogen Energy
,
33
(
21
), pp.
6021
6030
.
7.
Muhich
,
C. L.
,
Evanko
,
B. W.
,
Weston
,
K. C.
,
Lichty
,
P.
,
Liang
,
X.
,
Martinek
,
J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2013
, “
Efficient Generation of H2 by Splitting Water With an Isothermal Redox Cycle
,”
Science
,
341
(
6145
), pp.
540
542
.
8.
Charvin
,
P.
,
Abanades
,
S.
,
Flamant
,
G.
, and
Lemort
,
F.
,
2007
, “
Two-Step Water Splitting Thermochemical Cycle Based on Iron Oxide Redox Pair for Solar Hydrogen Production
,”
Energy
,
32
(
7
), pp.
1124
1133
.
9.
Gokon
,
N.
,
Mizuno
,
T.
,
Nakamuro
,
Y.
, and
Kodama
,
T.
,
2008
, “
Iron-Containing Yttria-Stabilized Zirconia System for Two-Step Thermochemical Water Splitting
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
011018
.
10.
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Siegel
,
N. P.
, and
Miller
,
J. E.
,
2008
, “
Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials
,”
Energy Fuels
,
22
(
6
), pp.
4115
4124
.
11.
Scheffe
,
J. R.
,
Allendorf
,
M. D.
,
Coker
,
E. N.
,
Jacobs
,
B. W.
,
McDaniel
,
A. H.
, and
Weimer
,
A. W.
,
2011
, “
Hydrogen Production Via Chemical Looping Redox Cycles Using Atomic Layer Deposition-Synthesized Iron Oxide and Cobalt Ferrites
,”
Chem. Mater.
,
23
(
8
), pp.
2030
2038
.
12.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
(
8
), pp.
735
739
.
13.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
,
2010
, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
(
15
), pp.
4163
4173
.
14.
Le Gal
,
A.
,
Abanades
,
S. P.
,
Bion
,
N.
,
Le Mercier
,
T.
, and
Harlé
,
V.
,
2013
, “
Reactivity of Doped Ceria-Based Mixed Oxides for Solar Thermochemical Hydrogen Generation Via Two-Step Water-Splitting Cycles
,”
Energy Fuels
,
27
(
10
), pp.
6068
6078
.
15.
Meng
,
Q.-L.
,
Lee
,
C-I.
,
Ishihara
,
T.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
,
2011
, “
Reactivity of CeO2-Based Ceramics for Solar Hydrogen Production Via a Two-Step Water-Splitting Cycle With Concentrated Solar Energy
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13435
13441
.
16.
Scheffe
,
J. R.
,
Weibel
,
D.
, and
Steinfeld
,
A.
,
2013
, “
Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
27
(
8
), pp.
4250
4257
.
17.
McDaniel
,
A. H.
,
Miller
,
E. C.
,
Arifin
,
D.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
O'Hayre
,
R.
,
Chueh
,
W. C.
, and
Tong
,
J.
,
2013
, “
Sr-and Mn-Doped LaAlO3−δ for Solar Thermochemical H2 and CO Production
,”
Energy Environ. Sci.
,
6
(
8
), pp.
2424
2428
.
18.
Dey
,
S.
,
Naidu
,
B.
, and
Rao
,
C.
,
2015
, “
Ln0.5A0.5MnO3 (Ln= lanthanide, A= Ca, Sr) Perovskites Exhibiting Remarkable Performance in the Thermochemical Generation of CO and H2 From CO2 and H2O
,”
Chem.-A Eur. J.
,
21
(
19
), pp.
7077
7081
.
19.
Ezbiri
,
M.
,
Takacs
,
M.
,
Theiler
,
D.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2017
, “
Tunable Thermodynamic Activity of LaxSr1-xMnyAl1-yO3-δ (0≤ x≤ 1, 0≤ y≤ 1) Perovskites for Solar Thermochemical Fuel Synthesis
,”
J. Mater. Chem. A
,
5
, pp.
4172
4182
.
20.
Hoes
,
M.
,
Muhich
,
C. L.
,
Jacot
,
R.
,
Patzke
,
G.
, and
Steinfeld
,
A.
,
2017
, “
Thermodynamics of Paired Charge-Compensating Doped Ceria With Superior Redox Performance for Solar Thermochemical Splitting of H2O and CO2
,”
J. Mater. Chem. A
,
5
, pp.
19476
19484
.
21.
Ackermann
,
S.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2014
, “
Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles
,”
J. Phys. Chem. C
,
118
(
10
), pp.
5216
5225
.
22.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.
23.
Furler
,
P.
,
Scheffe
,
J.
,
Marxer
,
D.
,
Gorbar
,
M.
,
Bonk
,
A.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2014
, “
Thermochemical CO2 Splitting Via Redox Cycling of Ceria Reticulated Foam Structures With Dual-Scale Porosities
,”
Phys. Chem. Chem. Phys.
,
16
(
22
), pp.
10503
10511
.
24.
Scheffe
,
J. R.
,
Welte
,
M.
, and
Steinfeld
,
A.
,
2014
, “
Thermal Reduction of Ceria Within an Aerosol Reactor for H2O and CO2 Splitting
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2175
2182
.
25.
Welte
,
M.
,
Barhoumi
,
R.
,
Zbinden
,
A.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2016
, “
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor
,”
Ind. Eng. Chem. Res.
,
55
(
40
), pp.
10618
10625
.
26.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
27.
Gibbons
,
W. T.
,
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Davidson
,
J. H.
, and
Jackson
,
G. S.
,
2014
, “
Ceria-Based Electrospun Fibers for Renewable Fuel Production Via Two-Step Thermal Redox Cycles for Carbon Dioxide Splitting
,”
Phys. Chem. Chem. Phys.
,
16
(
27
), pp.
14271
14280
.
28.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
,
129
(
1–4
), pp.
63
94
.
29.
Sun
,
C.
,
Li
,
H.
, and
Chen
,
L.
,
2012
, “
Nanostructured Ceria-Based Materials: Synthesis, Properties, and Applications
,”
Energy Environ. Sci.
,
5
(
9
), pp.
8475
8505
.
30.
Takacs
,
M.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2015
, “
Oxygen Nonstoichiometry and Thermodynamic Characterization of Zr Doped Ceria in the 1573–1773 K Temperature Range
,”
Phys. Chem. Chem. Phys.
,
17
(
12
), pp.
7813
7822
.
31.
Takacs
,
M.
,
Hoes
,
M.
,
Caduff
,
M.
,
Cooper
,
T.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2016
, “
Oxygen Nonstoichiometry, Defect Equilibria, and Thermodynamic Characterization of LaMnO3 Perovskites With Ca/Sr A-Site and Al B-Site Doping
,”
Acta Mater.
,
103
, pp.
700
710
.
32.
Cooper
,
T.
,
Scheffe
,
J. R.
,
Galvez
,
M. E.
,
Jacot
,
R.
,
Patzke
,
G.
, and
Steinfeld
,
A.
,
2015
, “
Lanthanum Manganite Perovskites With Ca/Sr A‐Site and Al B‐Site Doping as Effective Oxygen Exchange Materials for Solar Thermochemical Fuel Production
,”
Energy Technol.
,
3
(
11
), pp.
1130
1142
.
33.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
368
(
1923
), pp.
3269
3294
.
34.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.
35.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene Via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
36.
Hao
,
Y.
,
Yang
,
C.-K.
, and
Haile
,
S. M.
,
2014
, “
Ceria–Zirconia Solid Solutions (Ce1–xZrxO2−δ, x≤ 0.2) for Solar Thermochemical Water Splitting: A Thermodynamic Study
,”
Chem. Mater.
,
26
(
20
), pp.
6073
6082
.
37.
Bulfin
,
B.
,
Call
,
F.
,
Vieten
,
J.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Shvets
,
I.
,
2016
, “
Oxidation and Reduction Reaction Kinetics of Mixed Cerium Zirconium Oxides
,”
J. Phys. Chem. C
,
120
(
4
), pp.
2027
2035
.
38.
Call
,
F.
,
Roeb
,
M.
,
Schmücker
,
M.
,
Bru
,
H.
,
Curulla-Ferre
,
D.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2013
, “
Thermogravimetric Analysis of Zirconia-Doped Ceria for Thermochemical Production of Solar Fuel
,”
Am. J. Anal. Chem.
,
4
(
10
), pp.
37
45
.
39.
Call
,
F.
,
Roeb
,
M.
,
Schmu¨cker
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2015
, “
Ceria Doped With Zirconium and Lanthanide Oxides to Enhance Solar Thermochemical Production of Fuels
,”
J. Phys. Chem. C
,
119
(
13
), pp.
6929
6938
.
40.
Le Gal
,
A.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2011
, “
CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/zirconia Solid Solutions
,”
Energy Fuels
,
25
(
10
), pp.
4836
4845
.
41.
Le Gal
,
A.
, and
Abanades
,
S. P.
,
2012
, “
Dopant Incorporation in Ceria for Enhanced Water-Splitting Activity During Solar Thermochemical Hydrogen Generation
,”
J. Phys. Chem. C
,
116
(
25
), pp.
13516
13523
.
42.
Meng
,
Q.-L.
,
Lee
,
C.-I.
,
Shigeta
,
S.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
,
2012
, “
Solar Hydrogen Production Using Ce1−xLixO2−δ Solid Solutions Via a Thermochemical, Two-Step Water-Splitting Cycle
,”
J. Solid State Chem.
,
194
, pp.
343
351
.
43.
Meng
,
Q.-L.
,
Lee
,
C-I.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
,
2012
, “
Solar Thermochemical Process for Hydrogen Production Via Two-Step Water Splitting Cycle Based on Ce1−xPrxO2−δ Redox Reaction
,”
Thermochim. Acta
,
532
, pp.
134
138
.
44.
Meng
,
Q.-L.
, and
Tamaura
,
Y.
,
2014
, “
Enhanced Hydrogen Production by Doping Pr Into Ce0.9Hf0.1O2 for Thermochemical Two-Step Water-Splitting Cycle
,”
J. Phys. Chem. Solids
,
75
(
3
), pp.
328
333
.
45.
Scheffe
,
J. R.
,
Jacot
,
R.
,
Patzke
,
G. R.
, and
Steinfeld
,
A.
,
2013
, “
Synthesis, Characterization, and Thermochemical Redox Performance of Hf4+, Zr4+, and Sc3+ Doped Ceria for Splitting CO2
,”
J. Phys. Chem. C
,
117
(
46
), pp.
24104
24114
.
46.
Takacs
,
M.
,
Ackermann
,
S.
,
Bonk
,
A.
,
Neises‐von Puttkamer
,
M.
,
Haueter
,
P.
,
Scheffe
,
J.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2016
, “
Splitting CO2 With a Ceria‐Based Redox Cycle in a Solar‐Driven Thermogravimetric Analyzer
,”
AIChE J.
,
63
(4), pp. 1263–1271.
47.
Ishihara
,
T.
,
2009
,
Perovskite Oxide for Solid Oxide Fuel Cells
,
Springer Science & Business Media
, New York.
48.
Kubicek
,
M.
,
Bork
,
A. H.
, and
Rupp
,
J. L.
,
2017
, “
Perovskite Oxides—A Review on a Versatile Material Class for Solar-to-Fuel Conversion Processes
,”
J. Mater. Chem. A
,
5
, pp. 11983–12000.
49.
Yang
,
C.-K.
,
Yamazaki
,
Y.
,
Aydin
,
A.
, and
Haile
,
S. M.
,
2014
, “
Thermodynamic and Kinetic Assessments of Strontium-Doped Lanthanum Manganite Perovskites for Two-Step Thermochemical Water Splitting
,”
J. Mater. Chem. A
,
2
(
33
), pp.
13612
13623
.
50.
Demont
,
A.
, and
Abanades
,
S.
,
2014
, “
High Redox Activity of Sr-Substituted Lanthanum Manganite Perovskites for Two-Step Thermochemical Dissociation of CO2
,”
RSC Adv.
,
4
(
97
), pp.
54885
54891
.
51.
Deml
,
A. M.
,
Stevanović
,
V.
,
Holder
,
A. M.
,
Sanders
,
M.
,
O'Hayre
,
R.
, and
Musgrave
,
C. B.
,
2014
, “
Tunable Oxygen Vacancy Formation Energetics in the Complex Perovskite Oxide Srx La1–xMnyAl1–yO3
,”
Chem. Mater.
,
26
(
22
), pp.
6595
6602
.
52.
Dey
,
S.
,
Naidu
,
B.
,
Govindaraj
,
A.
, and
Rao
,
C.
,
2015
, “
Noteworthy Performance of La1−xCax MnO3 Perovskites in Generating H2 and CO by the Thermochemical Splitting of H2O and CO2
,”
Phys. Chem. Chem. Phys.
,
17
(
1
), pp.
122
125
.
53.
Bork
,
A. H.
,
Povoden‐Karadeniz
,
E.
, and
Rupp
,
J. L.
,
2017
, “
Modeling Thermochemical Solar‐to‐Fuel Conversion: CALPHAD for Thermodynamic Assessment Studies of Perovskites, Exemplified for (La,Sr)MnO3
,”
Adv. Energy Mater.
,
7
(
1
), p. 1601086.
54.
Zhai
,
S.
,
Rojas
,
J.
,
Ahlborg
,
N.
,
Lim
,
K.
,
Toney
,
M. F.
,
Jin
,
H.
,
Chueh
,
W. C.
, and
Majumdar
,
A.
,
2018
, “
The Use of Poly-Cation Oxides to Lower the Temperature of Two-Step Thermochemical Water Splitting
,”
Energy Environ. Sci.
,
11
, pp. 2172–2178.
55.
Demont
,
A.
, and
Abanades
,
S.
,
2015
, “
Solar Thermochemical Conversion of CO2 Into Fuel Via Two-Step Redox Cycling of Non-Stoichiometric Mn-Containing Perovskite Oxides
,”
J. Mater. Chem. A
,
3
(
7
), pp.
3536
3546
.
56.
Linstrom
,
P. J.
, and
Mallard
,
W.
,
2001
, “NIST Chemistry Webbook,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Standard Reference Database No.
69
.
57.
Tuller
,
H.
, and
Nowick
,
A.
,
1979
, “
Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals
,”
J. Electrochem. Soc.
,
126
(
2
), pp.
209
217
.
58.
Fogler
,
S. H.
,
1999
,
Elements of Chemical Reaction Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
.
59.
Zhao
,
Z.
,
Uddi
,
M.
,
Tsvetkov
,
N.
,
Yildiz
,
B.
, and
Ghoniem
,
A. F.
,
2016
, “
Redox Kinetics Study of Fuel Reduced Ceria for Chemical-Looping Water Splitting
,”
J. Phys. Chem. C
,
120
(
30
), pp.
16271
16289
.
60.
Scheffe
,
J. R.
,
McDaniel
,
A. H.
,
Allendorf
,
M. D.
, and
Weimer
,
A. W.
,
2013
, “
Kinetics and Mechanism of Solar-Thermochemical H2 Production by Oxidation of a Cobalt Ferrite–Zirconia Composite
,”
Energy Environ. Sci.
,
6
(
3
), pp.
963
973
.
61.
Arifin
,
D.
, and
Weimer
,
A. W.
,
2018
, “
Kinetics and Mechanism of Solar-Thermochemical H2 and CO Production by Oxidation of Reduced CeO2
,”
Sol. Energy
,
160
, pp.
178
185
.
62.
Levenspiel
,
O.
,
1999
,
Chemical Reaction Engineering
,
Wiley
,
New York
.
You do not currently have access to this content.