Three crucial aspects still to be overcome to achieve commercial competitiveness of the solar thermochemical production of hydrogen and carbon monoxide are recuperating the heat from the solid phase, achieving continuous or on-demand production beyond the hours of sunshine, and scaling to commercial plant sizes. To tackle all three aspects, we propose a moving brick receiver–reactor (MBR2) design with a solid–solid heat exchanger. The MBR2 consists of porous bricks that are reversibly mounted on a high temperature transport mechanism, a receiver–reactor where the bricks are reduced by passing through the concentrated solar radiation, a solid–solid heat exchanger under partial vacuum in which the reduced bricks transfer heat to the oxidized bricks, a first storage for the reduced bricks, an oxidation reactor, and a second storage for the oxidized bricks. The bricks may be made of any nonvolatile redox material suitable for a thermochemical two-step (TS) water splitting (WS) or carbon dioxide splitting (CDS) cycle. A first thermodynamic analysis shows that the MBR2 may be able to achieve solar-to-chemical conversion efficiencies of approximately 0.25. Additionally, we identify the desired operating conditions and show that the heat exchanger efficiency has to be higher than the fraction of recombination in order to increase the conversion efficiency.

References

1.
Intergovernmental Panel on Climate Change
,
2013
, “
Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change—Summary for Policymakers
,”
Climate Change 2013—The Physical Science Basis
,
T. F.
Stocker
,
D.
Qin
,
G.-K.
Plattner
,
M.
Tignor
,
S. K.
Allen
,
J.
Boschung
,
A.
Nauels
,
Y.
Xia
,
V.
Bex
, and
P. M.
Midgley
, eds., Cambridge University Press, Cambridge, UK.
2.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2015
, “
A Review on Solar Thermal Syngas Production Via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
254
285
.
3.
Muhich
,
C. L.
,
Ehrhart
,
B. D.
,
Al-Shankiti
,
I.
,
Ward
,
B. J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2016
, “
A Review and Perspective of Efficient Hydrogen Generation Via Solar Thermal Water Splitting
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
5
(
3
), pp.
261
287
.
4.
Yadav
,
D.
, and
Banerjee
,
R.
,
2016
, “
A Review of Solar Thermochemical Processes
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
497
532
.
5.
Koepf
,
E.
,
Alxneit
,
I.
,
Wieckert
,
C.
, and
Meier
,
A.
,
2017
, “
A Review of High Temperature Solar Driven Reactor Technology: 25 Years of Experience in Research and Development at the Paul Scherrer Institute
,”
Appl. Energy
,
188
, pp.
620
651
.
6.
Villafán-Vidales
,
H.
,
Arancibia-Bulnes
,
C.
,
Riveros-Rosas
,
D.
,
Romero-Paredes
,
H.
, and
Estrada
,
C.
,
2017
, “
An Overview of the Solar Thermochemical Processes for Hydrogen and Syngas Production: Reactors, and Facilities
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
894
908
.
7.
Tamaura
,
Y.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Ehrensberger
,
K.
,
1995
, “
Production of Solar Hydrogen by a Novel, 2-Step, Water-Splitting Thermochemical Cycle
,”
Energy
,
20
(
4
), pp.
325
330
.
8.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
,
1999
, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide-Solar Chemical Reactor Design
,”
Sol. Energy
,
67
(
1–3
), pp.
161
167
.
9.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A.
,
Nalbandian
,
L.
,
Zaspalis
,
V.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A.
,
2005
, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
,
79
(
4
), pp.
409
421
.
10.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
,
2007
, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
,
21
(
4
), pp.
2287
2293
.
11.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.
12.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
,
2008
, “
Thermochemical Two-Step Water-Splitting Reactor With Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2189
2199
.
13.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
14.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
.
15.
Lichty
,
P.
,
Liang
,
X.
,
Muhich
,
C.
,
Evanko
,
B.
,
Bingham
,
C.
, and
Weimer
,
A. W.
,
2012
, “
Atomic Layer Deposited Thin Film Metal Oxides for Fuel Production in a Solar Cavity Reactor
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16888
16894
.
16.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
.
17.
Thomey
,
D.
,
de Oliveira
,
L.
,
Säck
,
J.-P.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2012
, “
Development and Test of a Solar Reactor for Decomposition of Sulphuric Acid in Thermochemical Hydrogen Production
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16615
16622
.
18.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipinski
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
.
19.
Bader
,
R.
,
Chandran
,
R. B.
,
Venstrom
,
L. J.
,
Sedler
,
S. J.
,
Krenzke
,
P. T.
,
De Smith
,
R. M.
,
Banerjee
,
A.
,
Chase
,
T. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2015
, “
Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031007
.
20.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
21.
Siegrist
,
S.
, and
von Storch
,
H.
,
2018
, “
Solarstrahlungsempfänger, Reaktorsystem mit einem Solarstrahlungsempfänger, Verfahren zum Erwärmen von Feststoffmedium mittels konzentrierter Solarstrahlung sowie Verfahren zum solaren Betrieb einer thermochemischen Reaktion
,” Patent No. DE102018201319.5.
22.
Siegrist
,
S.
,
von Storch
,
H.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Moving Brick Receiver-Reactor (MBR2): A Solar Thermochemical Reactor and Process Design With a Solid-Solid Heat Exchanger and On-Demand Production of Hydrogen and/or Carbon Monoxide
,”
ASME Paper No. PowerEnergy2018-7665.
23.
Richter
,
S.
, and
von Storch
,
H.
,
2017
, “
Solarstrahlungsempfänger, Industrieanlage mit einem Solarstrahlungsempfänger sowie Verfahren zum Solarbetrieb einer endothermen Reaktion
,” Patent No. DE102017207170.
24.
von Storch
,
H.
, and
Siegrist
,
S.
,
2018
, “
Wärmeübertrager
,” Patent No. DE102018201317.9.
25.
Bulfin
,
B.
,
Call
,
F.
,
Lange
,
M.
,
Lubben
,
O.
,
Sattler
,
C.
,
Pitz-Paal
,
R.
, and
Shvets
,
I.
,
2015
, “
Thermodynamics of CeO2 Thermochemical Fuel Production
,”
Energy Fuels
,
29
(
2
), pp.
1001
1009
.
26.
Falter
,
C. P.
,
Sizmann
,
A.
, and
Pitz-Paal
,
R.
,
2015
, “
Modular Reactor Model for the Solar Thermochemical Production of Syngas Incorporating Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
122
, pp.
1296
1308
.
27.
Falter
,
C.
,
2017
, “
Efficiency Potential of Solar Thermochemical Reactor Concepts With Ecological and Economic Performance Analysis of Solar Fuel Production
,”
Ph.D. thesis
, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.https://elib.dlr.de/119009/
28.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
,
1970
, “
Specific Heat—Nonmetallic Solids
,”
Thermophysical Properties of Matter—The TPRC Data Series
,
Y. S.
Touloukian
, ed.,
IFI/Plenum
,
New York
.
29.
Panlener
,
R.
,
Blumenthal
,
R.
, and
Garnier
,
J.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
30.
Engineering ToolBox,
2018
, “
Engineering Toolbox
,” Engineering ToolBox, accessed June 18, 2018, https://www.engineeringtoolbox.com
31.
Falter
,
C. P.
, and
Pitz-Paal
,
R.
,
2018
, “
Modeling Counter-Flow Particle Heat Exchangers for Two-Step Solar Thermochemical Syngas Production
,”
Appl. Therm. Eng.
,
132
, pp.
613
623
.
32.
Brendelberger
,
S.
,
von Storch
,
H.
,
Bulfin
,
B.
, and
Sattler
,
C.
,
2017
, “
Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles—Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems
,”
Sol. Energy
,
141
, pp.
91
102
.
You do not currently have access to this content.