Ca-Mn-based perovskites doped in their A- and B-site were synthesized and comparatively tested versus the Co3O4/CoO and (Mn,Fe)2O3/(Mn,Fe)3O4 redox pairs with respect to thermochemical storage and oxygen pumping capability, as a function of the kind and extent of dopant. The perovskites' induced heat effects measured via differential scanning calorimetry are substantially lower: the highest reaction enthalpy recorded by the CaMnO3–δ composition was only 14.84 kJ/kg compared to 461.1 kJ/kg for Co3O4/CoO and 161.0 kJ/kg for (Mn,Fe)2O3/(Mn,Fe)3O4. Doping of Ca with increasing content of Sr decreased these heat effects; more than 20 at % Sr eventually eliminated them. Perovskites with Sr instead of Ca in the A-site exhibited also negligible heat effects, irrespective of the kind of B site cation. On the contrary, perovskite compositions characterized by high oxygen release/uptake can operate as thermochemical oxygen pumps enhancing the performance of water/carbon dioxide splitting materials. Oxygen pumping via Ca0.9Sr0.1MnO3–δ and SrFeO3–δ doubled and tripled, respectively, the total oxygen absorbed by ceria during its re-oxidation versus that absorbed without their presence. Such effective pumping compositions exhibited practically no shrinkage during one heat-up/cool-down cycle. However, they demonstrated an increase of the coefficient of linear expansion due to the superposition of “chemical expansion” to thermal-only one, the effect of which on the long-term dimensional stability has to be further quantified through extended cyclic operation.

References

1.
Bulfin
,
B.
,
Vieten
,
J.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Applications and Limitations of Two Step Metal Oxide Thermochemical Redox Cycles: A Review
,”
J. Mater. Chem. A
,
5
(
36
), pp.
18951
18966
.
2.
McDaniel
,
A. H.
,
2017
, “
Renewable Energy Carriers Derived From Concentrating Solar Power and Nonstoichiometric Oxides
,”
Curr. Opin. Green Sustainable Chem.
,
4
, pp.
37
43
.
3.
Brendelberger
,
S.
,
Vieten
,
J.
,
Vidyasagar
,
M. J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Demonstration of Thermochemical Oxygen Pumping for Atmosphere Control in Reduction Reactions
,”
Sol. Energy
,
170
, pp.
273
279
.
4.
Ezbiri
,
M.
,
Allen
,
K. M.
,
Gàlvez
,
M. E.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2015
, “
Design Principles of Perovskites for Thermochemical Oxygen Separation
,”
ChemSusChem
,
8
(
11
), pp.
1966
1971
.
5.
Brendelberger
,
S.
,
von Storch
,
H.
,
Bulfin
,
B.
, and
Sattler
,
C.
,
2017
, “
Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles–Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems
,”
Sol. Energy
,
141
, pp.
91
102
.
6.
Carrillo
,
A. J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2015
, “
Improving the Thermochemical Energy Storage Performance of the Mn2O3/Mn3O4 Redox Couple by the Incorporation of Iron
,”
ChemSusChem
,
8
(
11
), pp.
1947
1954
.
7.
Wong
,
B.
,
2011
, “
Thermochemical Heat Storage for Concentrated Solar Power
,” General Atomics, San Diego, CA, Report No.
DE-FG36-08GO18145
.http://www.osti.gov/scitech/biblio/1039304/
8.
Jiang
,
Q.
,
Tong
,
J.
,
Zhou
,
G.
,
Jiang
,
Z.
,
Li
,
Z.
, and Li, C.,
2014
, “
Thermochemical CO2 Splitting Reaction With Supported LaxA1−xFeyB1−yO3 (A=Sr, Ce, B=Co, Mn) Perovskite Oxides
,”
Sol. Energy
,
103
, pp.
425
437
.
9.
Scheffe
,
J. R.
,
Weibel
,
D.
, and
Steinfeld
,
A.
,
2013
, “
Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
27
, pp.
4250
4257
.
10.
Evdou
,
A.
,
Nalbandian
,
L.
, and
Zaspalis
,
V. T.
,
2008
, “
Perovskite Membrane Reactor for Continuous and Isothermal Redox Hydrogen Production From the Dissociation of Water
,”
J. Membr. Sci.
,
325
(
2
), pp.
704
711
.
11.
McDaniel
,
A. H.
,
Miller
,
E. C.
,
Arifin
,
D.
,
Ambrosini
,
A.
,
Coker
,
E.
,
O'Hayre
,
R.
,
Chueh
,
W. C.
, and
Tong
,
J.
,
2013
, “
Sr- and Mn-Doped LaAlO3–δ for Solar Thermochemical H2 and CO Production
,”
Energy Environ. Sci
,
6
(
8
), pp.
2424
2428
.
12.
Miller
,
J. E.
,
McDaniel
,
A. H.
, and
Allendorf
,
M. D.
,
2014
, “
Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles
,”
Adv. Energy Mater.
,
4
(
2
), p.
1300469
.
13.
Vieten
,
J.
,
Bulfin
,
B.
,
Senholdt
,
M.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Schmücker
,
M.
,
2017
, “
Redox Thermodynamics and Phase Composition in the System SrFeO3–δ–SrMnO3–δ
,”
Solid State Ion.
,
308
, pp.
149
155
.
14.
Kubicek
,
M.
,
Bork
,
A. H.
, and
Rupp
,
J. L.
,
2017
, “
Perovskite Oxides—A Review on a Versatile Material Class for Solar-to-Fuel Conversion Processes
,”
J. Mater. Chem. A
,
5
(
24
), pp.
11983
12000
.
15.
Babiniec
,
S. M.
,
Coker
,
E. N.
,
Ambrosini
,
A.
, and
Miller
,
J. E.
,
2016
, “
ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) Perovskites for Thermochemical Energy Storage
,”
AIP Conf. Proc.
,
1734
, p.
050006
.
16.
Babiniec
,
S. M.
,
Coker
,
E. N.
,
Miller
,
J. E.
, and
Ambrosini
,
A.
,
2015
, “
Investigation of LaxSr1−xCoyM1−yO3−δ (M = Mn, Fe) Perovskite Materials as Thermochemical Energy Storage Media
,”
Sol. Energy
,
118
, pp.
451
459
.
17.
Miller
,
J. E.
,
Ambrosini
,
A.
,
Babiniec
,
S. M.
,
Coker
,
E. N.
,
Ho
,
C. K.
,
Al-Ansary
,
H.
,
Jeter
,
S. M.
,
Loutzenhiser
,
P. G.
,
Johnson
,
N. G.
, and
Stechel
,
E. B.
,
2016
, “
High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage (Promotes)
,”
ASME
Paper No. ES2016-59660.
18.
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Wands
,
J. W.
,
Sanders
,
M. D.
, and
Jackson
,
G. S.
,
2017
, “
Thermochemical Energy Storage in Strontium-Doped Calcium Manganites for Concentrating Solar Power Applications
,”
Sol. Energy
,
151
, pp.
1
13
.
19.
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Kharait
,
R.
,
Sanders
,
M. D.
, and
Jackson
,
G. S.
,
2018
, “
Redox Cycles With Doped Calcium Manganites for Thermochemical Energy Storage to 1000 °C
,”
Appl. Energy
,
230
, pp.
1
18
.
20.
Zhang
,
Z.
,
Andre
,
L.
, and
Abanades
,
S.
,
2016
, “
Experimental Assessment of Oxygen Exchange Capacity and Thermochemical Redox Cycle Behavior of Ba and Sr Series Perovskites for Solar Energy Storage
,”
Sol. Energy
,
134
, pp.
494
502
.
21.
Vieten
,
J.
,
Bulfin
,
B.
,
Starr
,
D. E.
,
Hariki
,
A.
,
de Groot
,
F. M.
,
Azarpira
,
A.
,
Zachäus
,
C.
,
Hävecker
,
M.
,
Skorupska
,
K.
,
Knoblauch
,
N.
,
Schmucker
,
M.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Redox Behavior of Solid Solutions in the Sr Fe1–xCuxO3–δ System for Application in Thermochemical Oxygen Storage and Air Separation
,”
Energy Technol.
(in press).
22.
Vieten
,
J.
,
Bulfin
,
B.
,
Call
,
F.
,
Lange
,
M.
,
Schmucker
,
M.
,
Francke
,
A.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
Perovskite Oxides for Application in Thermochemical Air Separation and Oxygen Storage
,”
J. Mater. Chem. A
,
4
(
35
), pp.
13652
13659
.
23.
Agrafiotis
,
C.
,
Block
,
T.
,
Senholdt
,
M.
,
Tescari
,
S.
,
Roeb
,
M.
, and Sattler, C.,
2017
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 6: Testing of Mn-Based Combined Oxides and Porous Structures
,”
Sol. Energy
,
149
, pp.
227
244
.
24.
Zunft
,
S.
,
Hänel
,
M.
,
Krüger
,
M.
,
Dreißigacker
,
V.
,
Göhring
,
F.
, and Wahl, E.,
2011
, “
Jülich Solar Power Tower—Experimental Evaluation of the Storage Subsystem and Performance Calculation
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031019
.
25.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
,
4.18 Solar Fuels A2—Dincer, Ibrahim. Comprehensive Energy Systems
,
Elsevier
,
Oxford, UK
, pp.
733
761
.
26.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2015
, “
A Review on Solar Thermal Syngas Production Via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
254
285
.
27.
Tescari
,
S.
,
Singh
,
A.
,
de Oliveira
,
L.
,
Breuer
,
S.
,
Agrafiotis
,
C.
,
Schlögl-Knothe
,
B.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant
,”
Appl. Energy
,
189
, pp.
66
75
.
28.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-Cyclic Assessment and Semi-Quantitative Heat Effects Estimations
,”
Sol. Energy
,
133
, pp.
394
407
.
29.
Pagkoura
,
C.
,
Karagiannakis
,
G.
,
Zygogianni
,
A.
,
Lorentzou
,
S.
,
Kostoglou
,
M.
,
Konstandopoulos
,
A. G.
,
Rattenburry
,
M.
, and
Woodhead
,
J. W.
,
2014
, “
Cobalt Oxide Based Structured Bodies as Redox Thermochemical Heat Storage Medium for Future CSP Plants
,”
Sol. Energy
,
108
, pp.
146
163
.
30.
Atkinson
,
A.
, and
Ramos
,
T.
,
2000
, “
Chemically-Induced Stresses in Ceramic Oxygen Ion-Conducting Membranes
,”
Solid State Ion.
,
129
(
1–4
), pp.
259
269
.
31.
Knoblauch
,
N.
,
Simon
,
H.
, and
Schmücker
,
M.
,
2017
, “
Chemically Induced Volume Change of CeO2−δ and Nonstoichiometric Phases
,”
Solid State Ion.
,
301
, pp.
43
52
.
32.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Schmücker
,
M.
, and
Sattler
,
C.
,
2014
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 1: Testing of Cobalt Oxide-Based Powders
,”
Sol. Energy
,
102
, pp.
189
211
.
33.
Preisner
,
N. C.
,
Block
,
T.
,
Linder
,
M.
, and
Leion
,
H.
,
2018
, “
Stabilizing Particles of Manganese-Iron Oxide With Additives for Thermochemical Energy Storage
,”
Energy Technol.
,
6
(
11
), pp.
2154
2165
.
34.
Carrillo
,
A. J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2016
, “
Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Phys. Chem. C
,
120
(
49
), pp.
27800
27812
.
You do not currently have access to this content.