Along with the upscaling tendency, lighter and so more flexible wind turbine blades are introduced for reducing material and manufacturing costs. The flexible blade deforms under aerodynamic loads and in turn affects the flow field, arising the aeroelastic problems. In this paper, the impacts of blade flexibility on the wind turbine loads, power production, and pitch actions are discussed. An advanced aeroelastic model is developed for the study. A free wake vortex lattice model instead of the traditionally used blade element momentum (BEM) method is used to calculate the aerodynamic loads, and a geometrically exact beam theory is adopted to compute the blade structural dynamics. The flap, lead-lag bending, and torsion degrees-of-freedom (DOFs) are all included and nonlinear effects due to large deflections are considered. The National Renewable Energy Laboratory (NREL) 5 MW reference wind turbine is analyzed. It is found that the blade torsion deformations are significantly affected by both the aerodynamic torsion moment and the sectional aerodynamic center offset with respect to the blade elastic axis. Simulation results further show that the largest bending deflection of the blade occurs at the rated wind speed, while the torsion deformation in toward-feather direction continuously increases along with the above-rated wind speed. A significant reduction of the rotor power is observed especially at large wind speed when considering the blade flexibility, which is proved mainly due to the blade torsion deformations instead of the pure-bending deflections. Lower pitch angle settings are found required to maintain the constant rotor power at above-rated wind speeds.

References

1.
Vestas Wind Systems A/S
,
2011
,
Vestas V164-8.0 MW Brochure
, Vestas,
Aarhus N
,
Denmark
.
2.
Larsen
,
T. J.
,
Hansen
,
A. M.
, and
Buhl
,
T.
,
2004
, “
Aeroelastic Effects of Large Blade Deflections for Wind Turbines
,”
Special Topic Conference: The Science of Making Torque from Wind
, Delft, The Netherlands, Apr. 19–21, pp.
238
246
.http://orbit.dtu.dk/fedora/objects/orbit:70527/datastreams/file_dff97abb-75f6-4ff1-b04a-ced15e5ded7f/content
3.
Ahlström
,
A.
,
2006
, “
Influence of Wind Turbine Flexibility on Loads and Power Production
,”
Wind Energy
,
9
(
3
), pp.
237
249
.
4.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
, National Renewable Energy Laboratory,
Golden, CO
.
5.
Ponta
,
F. L.
,
Otero
,
A. D.
,
Lago
,
L. I.
, and
Rajan
,
A.
,
2016
, “
Effects of Rotor Deformation in Wind-Turbine Performance: The Dynamic Rotor Deformation Blade Element Momentum Model (DRD-BEM)
,”
Renew. Energy
,
92
, pp.
157
170
.
6.
Kim
,
D.
, and
Kim
,
Y.
,
2011
, “
Performance Prediction of a 5 MW Wind Turbine Blade Considering Aeroelastic Effect
,”
World Acad. Sci. Eng. Technol.
,
57
(
9
), pp.
771
775
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.310.1379&rep=rep1&type=pdf
7.
Rafiee
,
R.
, and
Fakoor
,
M.
,
2013
, “
Aeroelastic Investigation of a Composite Wind Turbine Blade
,”
Wind Struct.
,
17
(
6
), pp.
671
680
.
8.
Yu
,
D. O.
, and
Kwon
,
O. J.
,
2014
, “
Predicting Wind Turbine Blade Loads and Aeroelastic Response Using a Coupled CFD-CSD Method
,”
Renew. Energy
,
70
, pp.
184
196
.
9.
Wang
,
L.
,
Quant
,
R.
, and
Kolios
,
A.
,
2016
, “
Fluid Structure Interaction Modelling of Horizontal-Axis Wind Turbine Blades Based on CFD and FEA
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
11
25
.
10.
Houbolt
,
J. C.
, and
Brooks
,
G. W.
,
1957
,
Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades
, National Aeronautics and Space Administration,
Washington, DC
.
11.
Sprague
,
M. A.
,
Jonkman
,
J. M.
, and
Jonkman
,
B. J.
,
2015
, “
FAST Modular Framework for Wind Turbine Simulation: New Algorithms and Numerical Examples
,”
AIAA
Paper No. 2015–1461.
12.
Gebhardt
,
C. G.
, and
Roccia
,
B. A.
,
2014
, “
Non-Linear Aeroelasticity: An Approach to Compute the Response of Three-Blade Large-Scale Horizontal-Axis Wind Turbines
,”
Renew. Energy
,
66
, pp.
495
514
.
13.
Kim
,
T.
,
Hansen
,
A. M.
, and
Branner
,
K.
,
2013
, “
Development of an Anisotropic Beam Finite Element for Composite Wind Turbine Blades in Multibody System
,”
Renew. Energy
,
59
, pp.
172
183
.
14.
Hodges
,
D. H.
, and
Dowell
,
E. H.
,
1974
,
Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades
, National Aeronautics and Space Administration,
Washington, DC
.
15.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME Appl. Mech. Rev.
,
56
(
6
), pp.
553
613
.
16.
Hodges
,
D. H.
,
1990
, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
,
26
(
11
), pp.
1253
1273
.
17.
Bauchau
,
O. A.
, and
Kang
,
N. K.
,
1993
, “
A Multibody Formulation for Helicopter Structural Dynamic Analysis
,”
J. Am. Helicopter Soc.
,
38
(
2
), pp.
3
14
.
18.
Gupta
,
S.
, and
Leishman
,
J.
,
2006
, “
Performance Predictions of NREL Phase VI Combined Experiment Rotor Using a Free-Vortex Wake Model
,”
AIAA
Paper No. 2006–390.
19.
Kim
,
H.
,
Lee
,
S.
, and
Lee
,
S.
,
2010
, “
Numerical Analysis on the Aerodynamics of HAWTs Using Nonlinear Vortex Strength Correction
,”
Curr. Appl. Phys.
,
10
(
2
), pp.
S311
S315
.
20.
Kecskemety
,
K. M.
, and
McNamara
,
J. J.
,
2016
, “
Influence of Wake Dynamics on the Performance and Aeroelasticity of Wind Turbines
,”
Renew. Energy
,
88
, pp.
333
345
.
21.
Sebastian
,
T.
, and
Lackner
,
M.
,
2012
, “
Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine
,”
Energies
,
5
(
4
), pp.
968
1000
.
22.
Sebastian
,
T.
, and
Lackner
,
M. A.
,
2012
, “
Development of a Free Vortex Wake Method Code for Offshore Floating Wind Turbines
,”
Renew. Energy
,
46
, pp.
269
275
.
23.
Shen
,
X.
,
Chen
,
J.
,
Zhu
,
X.
,
Liu
,
P.
, and
Du
,
Z.
,
2015
, “
Multi-Objective Optimization of Wind Turbine Blades Using Lifting Surface Method
,”
Energy
,
90
, pp.
1111
1121
.
24.
Vatne
,
S. R.
,
2011
, “
Aeroelastic Instability and Flutter for a 10 MW Wind Turbine
,”
Master's thesis
, Norwegian University of Science and Technology, Trondheim, Norway.https://daim.idi.ntnu.no/masteroppgaver/006/6201/masteroppgave.pdf
25.
Menon
,
M.
, and
Ponta
,
F. L.
,
2017
, “
Dynamic Aeroelastic Behavior of Wind Turbine Rotors in Rapid Pitch-Control Actions
,”
Renew. Energy
,
107
, pp.
327
339
.
26.
Kallesøe
,
B. S.
,
2011
, “
Effect of Steady Deflections on the Aeroelastic Stability of a Turbine Blade
,”
Wind Energy
,
14
(
2
), pp.
209
224
.
27.
Manolas
,
D. I.
,
Riziotis
,
V. A.
, and
Voutsinas
,
S. G.
,
2015
, “
Assessing the Importance of Geometric Nonlinear Effects in the Prediction of Wind Turbine Blade Loads
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p. 041008.
28.
Saverin
,
J.
,
Peukert
,
J.
,
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Paschereit
,
C. O.
, and
Greenblatt
,
D.
,
2016
, “
Aeroelastic Simulation of Multi-MW Wind Turbines Using a Free Vortex Model Coupled to a Geometrically Exact Beam Model
,”
J. Phys. Conf. Ser.
,
753
, p. 082015.
29.
Hauptmann
,
S.
,
Bülk
,
M.
,
Schön
,
L.
,
Erbslöh
,
S.
,
Boorsma
,
K.
,
Grasso
,
F.
,
Kühn
,
M.
, and
Cheng
,
P. W.
,
2014
, “
Comparison of the Lifting-Line Free Vortex Wake Method and the Blade-Element-Momentum Theory Regarding the Simulated Loads of Multi-MW Wind Turbines
,”
J. Phys. Conf. Ser.
,
555
(
1
), p.
12050
.
30.
Jeong
,
M. S.
,
Kim
,
S. W.
,
Lee
,
I.
,
Yoo
,
S. J.
, and
Park
,
K. C.
,
2013
, “
The Impact of Yaw Error on Aeroelastic Characteristics of a Horizontal Axis Wind Turbine Blade
,”
Renew. Energy
,
60
, pp.
256
268
.
31.
Jeong
,
M. S.
,
Kim
,
S. W.
,
Lee
,
I.
, and
Yoo
,
S. J.
,
2014
, “
Wake Impacts on Aerodynamic and Aeroelastic Behaviors of a Horizontal Axis Wind Turbine Blade for Sheared and Turbulent Flow Conditions
,”
J. Fluids Struct.
,
50
, pp.
66
78
.
32.
Jeong
,
M.-S.
,
Kim
,
S.-W.
,
Lee
,
I.
,
Yoo
,
S.-J.
, and
Park
,
K. C.
,
2014
, “
Investigation of Wake Effects on Aeroelastic Responses of Horizontal-Axis Wind-Turbines
,”
AIAA J.
,
52
(
6
), pp.
1133
1144
.
33.
Saverin
,
J.
,
Marten
,
D.
, and
Pechlivanoglou
,
G.
,
2016
, “
Coupling of an Unsteady Lifting Line Free Vortex Wake Code to the Aeroelastic HAWT Simulation Suite FAST,
ASME
Paper No. GT2016-56290.
34.
Chattot
,
J.-J.
,
2006
, “
Extension of a Helicoidal Vortex Model to Account for Blade Flexibility and Tower Interference
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), p.
455
.
35.
Chattot
,
J. J.
,
2007
, “
Helicoidal Vortex Model for Wind Turbine Aeroelastic Simulation
,”
Comput. Struct.
,
85
(
11–14
), pp.
1072
1079
.
36.
Chen
,
J.
,
Shen
,
X.
,
Liu
,
P.
,
Zhu
,
X.
, and
Du
,
Z.
,
2017
, “
Design Tool for Aeroelastic Analysis of Wind Turbine Blades Based on Geometrically Exact Beam Theory and Lifting Surface Method
,”
AIAA
Paper No. 2017–0450.
37.
Bauchau
,
O. A.
,
2013
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht
, The Netherlands.
38.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
American Institute of Aeronautics and Astronautics
,
Reston
, VA.
39.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi
,
F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
1–4
), pp.
403
413
.
40.
Reissner
,
E.
,
1973
, “
On One-Dimensional Large-Displacement Finite-Strain Beam Theory
,”
Stud. Appl. Math.
,
L
(
2
), pp.
87
95
.
41.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
42.
Borri
,
M.
, and
Merlini
,
T.
,
1986
, “
A Large Displacement Formulation for Anisotropic Beam Analysis
,”
Meccanica
,
21
(
1
), pp.
30
37
.
43.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
.
44.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1988
, “
Nonlinear Composite Beam Theory
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
156
163
.
You do not currently have access to this content.