The present study deals with the experimental performance of a Marquise shaped channel solar flat-plate collector using Al2O3/water nanofluid and base fluid (pure water). The experimental setup comprises a special type of solar flat plate collector, closed working fluid systems, and the measurement devices. The absorber plate is made of two aluminum plates sandwiched together with Marquise-shaped flow channels. The volume fraction of 0.1% of Al2O3/water nanofluid is used for this study. The various parameters used to investigate performance of the collector energy and exergy efficiency are collector inlet and outlet fluid temperatures, mass flow rate of the fluid, solar radiation, and ambient temperature. The flow rate of nanofluid and water varies from 1 to 5 lpm. The maximum energy efficiencies attained are 83.17% and 59.72%, whereas the maximum exergy efficiencies obtained are 18.73% and 12.29% for the 20 nm—Al2O3/water nanofluids and pure water, respectively, at the flow rate of 3 lpm. These higher efficiencies may be due to the use of nanofluids and the sophisticated design of the absorber plate with the Marquise shaped channel.

References

1.
Yousefi
,
T.
,
Veisy
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of MWCNT-H2O Nanofluid on the Efficiency of Flat Plate Solar Collectors
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
207
212
.
2.
Sharma
,
K.
,
Singh
,
S.
,
Yadav
,
M.
,
Yadav
,
S.
, and
Tripathi
,
N. M.
,
2015
, “
A Review on the Performance of the Nanofluid Based Solar Collectors—Solar Energy
,”
Asian Rev. Mech. Eng.
,
4
(1), pp. 17–26.
3.
Saidur
,
R.
,
Meng
,
T. C.
,
Said
,
Z.
,
Hasanuzzaman
,
M.
, and
Kamyar
,
A.
,
2012
, “
Evaluation of the Effect of Nanofluid-Based Absorbers on Direct Solar Collector
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5899
5907
.
4.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.
5.
Ferrouillat
,
S.
,
Bontemps
,
A.
,
Poncelet
,
O.
,
Soriano
,
O.
, and
Gruss
,
J.-A.
,
2013
, “
Influence of Nanoparticle Shape Factor on Convective Heat Transfer and Energetic Performance of Water-Based SiO2 and ZnO Nanofluids
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
839
851
.
6.
Ben Hassine
,
I.
, and
Eicker
,
U.
,
2013
, “
Impact of Load Structure Variation and Solar Thermal Energy Integration on an Existing District Heating Network
,”
Appl. Therm. Eng.
,
50
(
2
), pp.
1437
1446
.
7.
Ghaebi
,
H.
,
Bahadori
,
M. N.
, and
Saidi
,
M. H.
,
2014
, “
Performance Analysis and Parametric Study of Thermal Energy Storage in an Aquifer Coupled With a Heat Pump and Solar Collectors, for a Residential Complex in Tehran, Iran
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
156
170
.
8.
Mahian
,
O.
,
Kianifar
,
A.
,
Heris
,
S. Z.
,
Wen
,
D.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2017
, “
Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped With a Heat Exchanger
,”
Nano Energy
,
36
, pp.
134
155
.
9.
Wang
,
Z. L.
, and
Song
,
J.
,
2006
, “
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,”
Science
,
312
(
5771
), pp.
242
246
.
10.
Wang
,
X.
,
Song
,
J.
,
Liu
,
J.
, and
Wang
,
Z. L.
,
2007
, “
Direct-Current Nanogenerator Driven by Ultrasonic Waves
,”
Science
,
316
(
5821
), pp.
102
105
.
11.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol. 66, D. A. Siginer and H. P. Wang, eds., ASME, New York, pp. 99–105.
12.
Navas
,
J.
,
Coronilla
,
A. S.
,
Martín
,
E. I.
,
Teruel
,
M.
,
Gallardo
,
J. J.
,
Aguilar
,
T.
,
Villarejo
,
R. G.
,
Alcántara
,
R.
,
Lorenzo
,
C. F.
,
Piñero
,
J. C.
, and
Calleja
,
J. M.
,
2016
, “
On the Enhancement of Heat Transfer Fluid for Concentrating Solar Power Using Cu and Ni Nanofluids: An Experimental and Molecular Dynamics Study
,”
Nano Energy
,
27
, pp.
213
224
.
13.
Milanese
,
M.
,
Colangelo
,
G.
,
Iacobazzi
,
F.
, and
de Risi
,
A.
,
2017
, “
Modeling of Double-Loop Fluidized Bed Solar Reactor for Efficient Thermochemical Fuel Production
,”
Sol. Energy Mater. Sol. Cells
,
160
, pp.
174
181
.
14.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
64
75
.
15.
He
,
Q.
,
Zeng
,
S.
, and
Wang
,
S.
,
2015
, “
Experimental Investigation on the Efficiency of Flat-Plate Solar Collectors With Nanofluids
,”
Appl. Therm. Eng.
,
88
, pp.
165
171
.
16.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.
17.
Colangelo
,
G.
,
Favale
,
E.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2013
, “
A New Solution for Reduced Sedimentation Flat Panel Solar Thermal Collector Using Nanofluids
,”
Appl. Energy
,
111
, pp.
80
93
.
18.
Otanicar
,
T.
,
Phalen
,
P.
,
Prasher
,
R.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.
19.
Sani
,
E.
,
Barison
,
S.
,
Pagura
,
C.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Jafrancesco
,
D.
, and
Francini
,
F.
,
2010
, “
Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers
,”
Opt. Express
,
18
(
5
), pp.
5179
5187
.
20.
Sani
,
E.
,
Mercatelli
,
L.
,
Barison
,
S.
,
Pagura
,
C.
,
Agresti
,
F.
,
Colla
,
L.
, and
Sansoni
,
P.
,
2011
, “
Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors
,”
Sol. Energy Mater. Sol. Cells
,
95
(
11
), pp.
2994
3000
.
21.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimisation
,
Wiley
,
New York
.
22.
Saha
,
S. K.
, and
Mahata
,
D. K.
,
2001
, “
Thermodynamic Optimisation of Solar Flat Plate Collector
,”
Renewable Energy
,
23
(
2
), pp.
181
193
.
23.
Farahat
,
S.
,
Sarhaddi
,
F.
, and
Ajam
,
H.
,
2009
, “
Exergetic Optimization of Flat Plate Solar Collectors
,”
Renewable Energy
,
34
(
4
), pp.
1169
1174
.
24.
Jafarkazemi
,
F.
, and
Ahmadifard
,
E.
,
2013
, “
Energetic and Exergetic Evaluation of Flat Plate Solar Collectors
,”
Renewable Energy
,
56
, pp.
55
63
.
25.
Kameya
,
Y.
, and
Hanamura
,
K.
,
2011
, “
Enhancement of Solar Radiation Absorption Using Nanoparticle Suspension
,”
Sol. Energy
,
85
(
2
), pp.
299
307
.
26.
Khedkar
,
R. S.
,
Sonawane
,
S. S.
, and
Wasewar
,
K. L.
,
2012
, “
Influence of CuO Nanoparticles in Enhancing the Thermal Conductivity of Water and Monoethylene Glycol Based Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(5), pp. 665–669.
27.
Khedkar
,
R. S.
,
Sonawane
,
S. S.
, and
Wasewar
,
K. L.
,
2013
, “
Water to Nanofluids Heat Transfer in Concentric Tube Heat Exchanger: Experimental Study (NUiCONE 2012)
,”
Procedia Eng.
,
51
, pp.
318
323
.
28.
Mao
,
L. B.
,
Zhang
,
R. Y.
,
Ke
,
X. F.
, and
Liu
,
Z. J.
,
2009
, “
Photo-Thermal Properties of Nanofluid-Based Solar Collector
,”
Acta Energy Sol. Sin.
,
30
(12), pp.
1647
1652
.
29.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
.
30.
Hordy
,
N.
,
Rabilloud
,
D.
,
Meunier
,
J.-L.
, and
Coulombe
,
S.
,
2014
, “
High Temperature and Long-Term Stability of Carbon Nanotube Nanofluids for Direct Absorption Solar Thermal Collectors
,”
Sol. Energy
,
105
, pp.
82
90
.
31.
Gupta
,
H. K.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2015
, “
Investigations for Effect of Al2O3-H2O Nanofluid Flow Rate on the Efficiency of Direct Absorption Solar Collector
,”
J. Case Stud. Therm. Eng.
,
5
, pp.
70
78
.
32.
Yousefia
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.
33.
Niranjan
,
G.
,
Chilambarasan
,
L.
,
Raja Sekhar
,
Y.
, and
Vikranthreddy
,
D.
,
2017
, “
Performance Studies on Solar Collector With Grooved Absorber Tube Configuration Using Aqueous ZnO–Ethylene Glycol Nanofluids
,”
Appl. Sol. Energy
,
53
(
3
), pp.
215
221
.
34.
Shojaeizadeh
,
E.
, and
Veysi
,
F.
,
2016
, “
Development of a Correlation for Parameter Controlling Using Exergy Efficiency Optimization of an Al2O3/Water Nanofluid Based Flat-Plate Solar Collector
,”
Appl. Therm. Eng.
,
98
, pp.
1116
1129
.
35.
Arıkan
,
E.
,
Abbasŏglu
,
S.
, and
Gazi
,
M.
,
2018
, “
Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids
,”
Sustainability
,
10
(
6
), p.
1794
.
36.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
37.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.
38.
Zhu
,
D.
,
Li
,
X.
,
Wang
,
N.
,
Wang
,
X.
,
Gao
,
J.
, and
Li
,
H.
,
2009
, “
Dispersion Behavior and Thermal Conductivity Characteristics of Al2O3-H2O Nanofluids
,”
Curr. Appl. Phys.
,
9
(
1
), pp.
131
139
.
39.
Muhammad
,
M. J.
,
Muhammad
,
I. A.
,
Sidik
,
N. A. C.
,
Yazid
,
M. N. A. W. M.
,
Mamat
,
R.
, and
Najafi
,
G.
,
2016
, “
The Use of Nanofluids for Enhancing the Thermal Performance of Stationary Solar Collectors: A Review
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
226
236
.
40.
Choudhary
,
R.
, and
Subudhi
,
S.
,
2016
, “
Aspect Ratio Dependence of Turbulent Natural Convection in Al2O3/Water Nanofluids
,”
Appl. Therm. Eng.
,
108
, pp.
1095
1104
.
41.
Khurana
,
D.
,
Choudhary
,
R.
, and
Subudhi
,
S.
,
2016
, “
Investigation of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluids Using Full Factorial Design and Utility Concept
,”
Nano
,
11
(
8
), p.
1650093
.
42.
Choudhary
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al2O3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
.
43.
Das
,
P. K.
,
Islam
,
N.
,
Santra
,
A. K.
, and
Ganguly
,
R.
,
2017
, “
Experimental Investigation of Thermophysical Properties of Al2O3–Water Nanofluid: Role of Surfactants
,”
J. Mol. Liq.
,
237
, pp.
304
312
.
44.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
, pp.
240
307
.
45.
Bergman
,
T. L.
,
2009
, “
Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Forced Convection
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1240
1244
.
46.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.
47.
Esen
,
H.
,
2008
, “
Experimental Energy and Exergy Analysis of Double-Flow Solar Air Heater Having Different Obstacles on Absorber Plates
,”
Build. Environ.
,
43
(
6
), pp.
1046
1054
.
48.
Pankaj
,
R.
,
2017
, “
Enhancement of Performance of Flat Plate Solar Collector Using Nanofluid
,” M.Tech thesis, Indian Institute of Roorkee, Roorkee, India.
49.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide Based Nanofluid
,”
J. Cleaner Prod.
,
133
, pp. 518–530.
50.
Gupta
,
H. K.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2015
, “
An Experimental Investigation of a Low Temperature Al2O3-H2O Nanofluid Based Direct Absorption Solar Collector
,”
Sol. Energy
,
118
, pp.
390
396
.
51.
Verma
,
S. K.
,
Tiwari
,
A. K.
, and
Chauhan
,
D. S.
,
2017
, “
Experimental Evaluation of Flat Plate Solar Collector Using Nanofluids
,”
Energy Convers. Manage.
,
134
, pp.
103
115
.
52.
Sarsam
,
W. S.
,
Kazi
,
S. N.
, and
Badarudin
,
A.
,
2015
, “
A Review of Studies on Using Nanofluids in Flat-Plate Solar Collectors
,”
Sol. Energy
,
122
, pp.
1245
1265
.
You do not currently have access to this content.