Abstract

Air conditioning systems (ACSs) represent one of the main demands for electricity in residential, commercial, and industrial buildings. The use of a photovoltaic air conditioning unit (PVACU) represents an attractive application to this demand for reasons such as environmental concerns and the match between diurnal cooling load and solar resource. A PVACU consists of a photovoltaic generator (PVG) that supply an ACS through direct current to direct current and frequency converters, without energy storage. This system considers the natural adjustment of the ACS cooling capacity according to the PVG power. Modeling the ACS, the PVG, and the thermal load (TL) makes possible to evaluate PVACU performance. For this, a small library’s TL and an ACS supplied by a PVG were used as case study. The PVG installed capacity assumes values of 700, 1000, and 1400 Wp. The simulation results show that the PVACU with a 1400 Wp PVG would be sufficient to regulate internal temperature within international comfort standards in the range of 20 °C to 24 °C. According to the data obtained in the simulations, it was possible to conclude that the PVACU has a large potential to be used in air conditioning of other environments in regions with Amazonian climatic conditions.

References

1.
OECD/IEA
,
2013
,
Transition to Sustainable Buildings—Strategies and Opportunities to 2050
,
International Energy Agency
,
Paris, France
, Accessed Feb. 21, 2018, http://www.iea.org/etp/buildings
2.
Atam
,
E.
,
2017
, “
Current Software Barriers to Advanced Model-Based Control Design for Energy-Efficient Buildings
,”
Renewable Sustainable Energy Rev.
,
73
(
8
), pp.
1031
1040
. 10.1016/j.rser.2017.02.015
3.
Boyano
,
A.
,
Hernandez
,
P.
, and
Wolf
,
O.
,
2013
, “
Energy Demands and Potential Savings in European Office Buildings: Case Studies Based on EnergyPlus Simulations
,”
Energy Build.
,
65
(
10
), pp.
19
28
. 10.1016/j.enbuild.2013.05.039
4.
Fumo
,
N.
,
2014
, “
A Review on the Basics of Building Energy Estimation
,”
Renewable Sustainable Energy Rev.
,
31
(
3
), pp.
53
60
. 10.1016/j.rser.2013.11.040
5.
Fridley
,
D. G.
,
Zheng
,
N.
, and
Zhou
,
N.
,
2008
, “
Estimating Total Energy Consumption and Emissions of China’s Commercial and Office Buildings
,”
Lawrence Berkeley National Laboratory, Report No. LBNL- 248E
.
6.
Lopes
,
A. C. P.
,
Oliveira Filho
,
D.
,
Altoe
,
L.
,
Carlo
,
J. C.
, and
Lima
,
B. B.
,
2016
, “
Energy Efficiency Labeling Program for Buildings in Brazil Compared to the United States’ and Portugal’s
,”
Renewable Sustainable Energy Rev.
,
66
(
14
), pp.
207
219
. 10.1016/j.rser.2016.07.033
7.
Aguilar
,
F. J.
,
Aledo
,
S.
, and
Quiles
,
P. V.
,
2017
, “
Experimental Analysis of an Air Conditioner Powered by Photovoltaic Energy and Supported by the Grid
,”
Appl. Therm. Eng.
,
123
(
14
), pp.
486
497
. 10.1016/j.applthermaleng.2017.05.123
8.
Aguilar
,
H. M. C.
,
Pinho
,
J. T.
, and
Galhardo
,
M. A. B.
,
2007
,
Design of an Efficient Building in Hot and Humid Climate
,
II Brazilian Congress of Energy Efficiency
,
Vitória
.
9.
Yin
,
Y. L.
,
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2013
, “
Experimental Investigation and Performance Analysis of a Mini-Type Solar Absorption Cooling System
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
267
277
. 10.1016/j.applthermaleng.2013.05.040
10.
Izquierdo
,
M.
,
Lizarte
,
R.
,
Marcos
,
J. D.
, and
Gutiérrez
,
G.
,
2008
, “
Air Conditioning Using an Aircooled Single Effect Lithium Bromide Absorption Chiller: Results of a Trial Conducted in Madrid in August 2005
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1074
1081
. 10.1016/j.applthermaleng.2007.06.009
11.
Zhai
,
X. Q.
,
Qu
,
M.
,
Li
,
Y.
, and
Wang
,
R. Z.
,
2011
, “
A Review for Research and new Design Options of Solar Absorption Cooling Systems
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4416
4423
. 10.1016/j.rser.2011.06.016
12.
Kim
,
D. S.
, and
Ferreira
,
C. A. I.
,
2008
, “
Solar Refrigeration Options—A State of the Art Review
,”
Int. J. Refrig.
,
31
(
1
), pp.
3
15
. 10.1016/j.ijrefrig.2007.07.011
13.
Chen
,
H.
,
Riffat
,
S. B.
, and
Fu
,
Y.
,
2011
, “
Experimental Study on a Hybrid Photovoltaic/Heat Pump System
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4132
4138
. 10.1016/j.applthermaleng.2011.08.027
14.
Fong
,
K. F.
,
Chow
,
T. T.
,
Lee
,
C. K.
,
Lin
,
Z.
, and
Chan
,
L. S.
,
2010
, “
Comparative Study of Different Solar Cooling Systems for Buildings in Subtropical City
,”
Sol. Energy
,
84
(
2
), pp.
227
244
. 10.1016/j.solener.2009.11.002
15.
Otanicar
,
T.
,
Taylor
,
R. A.
, and
Phelan
,
P.
,
2012
, “
Prospects for Solar Cooling—An Economic and Environmental Assessment
,”
Sol. Energy
,
86
(
5
), pp.
1287
1299
. 10.1016/j.solener.2012.01.020
16.
Noro
,
M.
, and
Lazzarin
,
R. M.
,
2014
, “
Solar Cooling Between Thermal and Photovoltaic: An Energy and Economic Comparative Study in the Mediterranean Conditions
,”
Energy
,
73
(
10
), pp.
453
464
. 10.1016/j.energy.2014.06.035
17.
Gupta
,
B. L.
,
Bhatnagar
,
M.
, and
Mathur
,
J.
,
2014
, “
Optimum Sizing of PV Panel, Battery Capacity and Insulation Thickness for a Photovoltaic Operated Domestic Refrigerator
,”
Sustainable Energy Technol. Assess.
,
7
(
3
), pp.
55
67
. 10.1016/j.seta.2014.03.005
18.
Vaishak
,
S.
, and
Bhale
,
P. V.
,
2019
, “
Effect of Dust Deposition on Performance Characteristics of a Refrigerant Based Photovoltaic/Thermal System
,”
Sustainable Energy Technol. Assess.
,
36
(
6
), pp.
100548
. 10.1016/j.seta.2019.100548
19.
Allouhi
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
,
El Rhafiki
,
T.
,
Mourad
,
Y.
, and
Zeraouli
,
Y.
,
2015
, “
Economic and Environmental Assessment of Solar air-Conditioning Systems in Morocco
,”
Renewable Sustainable Energy Rev.
,
50
(
10
), pp.
770
781
. 10.1016/j.rser.2015.05.044
20.
Lazzarin
,
R. M.
, and
Noro
,
M.
,
2018
, “
Past, Present, Future of Solar Cooling: Technical and Economical Considerations
,”
Sol. Energy
,
172
(
14–15
), pp.
2
13
. 10.1016/j.solener.2017.12.055
21.
Aguilar
,
F.
,
Crespí-Llorens
,
D.
, and
Quiles
,
P. V.
,
2019
, “
Techno-economic Analysis of an Air Conditioning Heat Pump Powered by Photovoltaic Panels and the Grid
,”
Sol. Energy
,
180
(
4
), pp.
169
179
. 10.1016/j.solener.2019.01.005
22.
Zhao
,
B. Y.
,
Li
,
Y.
,
Wang
,
R. Z.
,
Zhao
,
Z. G.
, and
Taylor
,
R. A.
,
2018
, “
A Universal Method for Performance Evaluation of Solar Photovoltaic Air-Conditioner
,”
Sol. Energy
,
172
(
14–15
), pp.
58
68
. 10.1016/j.solener.2018.05.029
23.
Huang
,
B. J.
,
Hou
,
T. F.
,
Hsu
,
P. C.
,
Lin
,
T. H.
,
Chen
,
Y. T.
,
Chen
,
C. W.
, and
Lee
,
K. Y.
,
2016
, “
Design of Direct Solar PV Driven Air Conditioner
,”
Renewable Energy
,
88
(
6
), pp.
95
101
. 10.1016/j.renene.2015.11.026
24.
Li
,
Y.
,
Zhao
,
B. Y.
,
Zhao
,
Z. G.
,
Taylor
,
R. A.
, and
Wang
,
R. Z.
,
2018
, “
Performance Study of a Grid-Connected Photovoltaic Powered Central Air Conditioner in the South China Climate
,”
Renewable Energy
,
126
(
13
), pp.
1113
1125
. 10.1016/j.renene.2017.05.064
25.
Aguilar
,
H. M.
,
Galhardo
,
M. A.
, and
Pinho
,
J. T.
,
2018
, “
Application of Energy Conservation Measures and Their Impact on the Thermal-Energetic Performance of a Building in the Brazilian Amazon Region: A Case Study
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031005
. 10.1115/1.4039274
26.
ANEEL
,
2012
,
Normative Resolution No. 482, April 17, 2012
,
National Electric Energy Agency
,
Brasilia, Brazil
, Accessed Feb. 21, 2018, http://www2.aneel.gov.br/cedoc/pubren2012482.pdf
27.
ANEEL
,
2015
,
Normative Resolution No 687, of November 24, 2015
,
National Electric Energy Agency
,
Brasilia, Brazil
, Accessed Feb. 21, 2018, http://www2.aneel.gov.br/cedoc/pubren2015687.pdf
28.
Singh
,
G. K.
,
2013
, “
Solar Power Generation by PV (Photovoltaic) Technology: A Review
,”
Energy
,
53
(
5
), pp.
1
13
. 10.1016/j.energy.2013.02.057
29.
Júnior
,
W. B.
,
Macêdo
,
W. N.
, and
Pinho
,
J. T.
,
2014
, “
Analysis of Characteristic Parameters of Commercial Photovoltaic Modules
,”
Energy Procedia
,
57
(
14
), pp.
4
13
. 10.1016/j.egypro.2014.10.002
30.
Bilgili
,
M.
,
2011
, “
Hourly Simulation and Performance of Solar Electric-Vapor Compression Refrigeration System
,”
Sol. Energy
,
85
(
11
), pp.
2720
2731
. 10.1016/j.solener.2011.08.013
31.
Calm
,
J. M.
, and
Domanski
,
P.
,
2004
, “
R-22 Replacement Status
,”
ASHRAE J.
,
46
(
12
), pp.
29
39
.
32.
Green
,
C.
, and
McDonald
,
R.
,
2015
, “
Modeling and Test of the Efficiency of Electronic Speed Controllers for Brushless DC Motors
,”
15th AIAA Aviation Technology, Integration, and Operations Conference
,
Dallas, TX
,
June
, p.
3191
.
33.
Sivakumar
,
S.
,
Sathik
,
M. J.
,
Manoj
,
P. S.
, and
Sundararajan
,
G.
,
2016
, “
An Assessment on Performance of DC–DC Converters for Renewable Energy Applications
,”
Renewable Sustainable Energy Rev.
,
58
(
6
), pp.
1475
1485
. 10.1016/j.rser.2015.12.057
34.
Yamankaradeniz
,
R.
,
Horuz
,
I.
,
Kaynakli
,
O.
,
Coskun
,
S.
, and
Yamankaradeniz
,
N.
,
2009
,
Refrigeration Techniques and Heat Pump Applications
, 2nd ed.,
Dora Company
,
Bursa, Turkey
.
35.
Tassou
,
S. A.
, and
Qureshi
,
T. Q.
,
1998
, “
Comparative Performance Evaluation of Positive Displacement Compressor in Variable-Speed Refrigeration Application
,”
Int. J. Refrig.
,
21
(
1
), pp.
29
41
. 10.1016/S0140-7007(97)00082-0
36.
Özgoren
,
M.
,
Erdoğan
,
K.
,
Kahraman
,
A.
,
Solmaz
,
O.
, and
Köse
,
F.
,
2010
, “
Calculation of Dynamic Cooling Load Capacity of a Building Air-Conditioning Powered by Wind or Solar Energy
,”
International Aegean Energy Symposium and Exhibition (IEESE-5)
,
Denizli
,
June
, pp.
27
30
.
37.
Rawat
,
R.
,
Kaushik
,
S. C.
, and
Lamba
,
R.
,
2016
, “
A Review on Modeling, Design Methodology and Size Optimization of Photovoltaic Based Water Pumping, Standalone and Grid Connected System
,”
Renewable Sustainable Energy Rev.
,
57
(
5
), pp.
1506
1519
. 10.1016/j.rser.2015.12.228
38.
Odeh
,
N.
,
Grassie
,
T.
,
Henderson
,
D.
, and
Muneer
,
T.
,
2006
, “
Modelling of Flow Rate in a Photovoltaic-Driven Roof Slate-Based Solar Ventilation Air Preheating System
,”
Energy Convers. Manage.
,
47
(
7–8
), pp.
909
925
. 10.1016/j.enconman.2005.06.005
39.
Wang
,
S. K.
,
2000
,
Handbook of air Conditioning and Refrigeration (Vol. 2)
,
McGraw-Hill
,
Load Calculations, New York
, pp.
6.1
6.55
.
40.
ABNT
,
2011
,
Standard ISO 9241-11
.
You do not currently have access to this content.