Abstract

The ability to predict solar radiation one-day-ahead is critical for the best management of renewable energy tied-grids. Several machine learning ensemble techniques have been proposed to enhance the short-term prediction of solar radiation strength. In general, finding an optimal ensemble model that consists of combining individual predictors is not trivial due to the need for tuning and other related issues. Few comparative studies have been presented to obtain optimal structures of machine learning ensemble that deal with predicting solar radiation. The contribution of the present research consists of a comparative study of various structures of stacking-based ensembles of data-driven machine learning predictors that are widely used nowadays to conclude the best stacking strategies in terms of performance to combine predictors of solar radiation. The base individual predictors are arranged to predict solar radiation intensity using historical weather and solar radiation records. Three stacking techniques, namely, feed-forward neural networks, support vector regressors, and k-nearest neighbor regressors, have been examined and compared to combine the prediction outputs of base learners. Most of the examined stacking models have been found capable to predict the solar radiation, but those related to combining heterogeneous models using neural meta-models have shown superior performance. Furthermore, we have compared the performance of combined models against recurrent models. The solar radiation predictions of the surveyed models have been evaluated and compared over an entire year. The performance enhancements provided by each alternative ensemble have been discussed.

References

1.
Assi
,
A.
, and
Jama
,
M.
,
2010
, “
Estimating Global Solar Radiation on Horizontal From Sunshine Hours in Abu Dhabi–UAE
,”
Proceedings of the 4th WSEAS International Conference on Renewable Energy Sources
,
Cambridge
, pp.
101
108
.
2.
Hussain
,
S.
, and
AlAlili
,
A.
,
2016
, “
Online Sequential Learning of Neural Networks in Solar Radiation Modeling Using Hybrid Bayesian Hierarchical Approach
,”
ASME J. Solar Energy Eng.
,
138
(
6
), p.
061012
. 10.1115/1.4034907
3.
Elliston
,
B.
,
Diesendorf
,
M.
, and
MacGill
,
I.
,
2012
, “
Simulations of Scenarios With 100% Renewable Electricity in the Australian National Electricity Market
,”
Energy Policy
,
45
, pp.
606
613
. 10.1016/j.enpol.2012.03.011
4.
Kean Yap
,
W.
, and
Karri
,
V.
,
2012
, “
Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia
,”
ASME J. Solar Energy Eng.
,
134
(
3
), p.
034501
. 10.1115/1.4006574
5.
Seo
,
D.
, and
Krarti
,
M.
,
2011
, “
Hourly Solar Radiation Model Suitable for Worldwide Typical Weather File Generation
,”
ASME J. Solar Energy Eng.
,
133
(
4
), p.
041002
. 10.1115/1.4003883
6.
Diagne
,
M.
,
David
,
M.
,
Lauret
,
P.
,
Boland
,
J.
, and
Schmutz
,
N.
,
2013
, “
Review of Solar Irradiance Forecasting Methods and a Proposition for Small-Scale Insular Grids
,”
Renewable Sustainable Energy Rev.
,
27
, pp.
65
76
. 10.1016/j.rser.2013.06.042
7.
Islam
,
M. T.
,
Huda
,
N.
,
Abdullah
,
A. B.
, and
Saidur
,
R. A.
,
2019
, “
Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
987
1018
. 10.1016/j.rser.2018.04.097
8.
Voyant
,
C.
,
Notton
,
G.
,
Kalogirou
,
S.
,
Nivet
,
M. L.
,
Paoli
,
C.
,
Motte
,
F.
, and
Fouilloy
,
A.
,
2017
, “
Machine Learning Methods for Solar Radiation Forecasting: A Review
,”
Renewable Energy
,
105
, pp.
569
582
. 10.1016/j.renene.2016.12.095
9.
Assi
,
A. H.
,
Al-Shamisi
,
M. H.
,
Hejase
,
H. A.
, and
Haddad
,
A.
,
2013
, “
Prediction of Global Solar Radiation in UAE Using Artificial Neural Networks
,”
Proceedings of the 2nd International Conference on Renewable Energy Research and Applications (ICRERA)
,
Madrid, Spain
, pp.
196
200
.
10.
AL-HAJJ
,
R.
,
Skafi
,
M.
, and
Haidar
,
A. M.
,
2014
, “
Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
,”
Int. J. Mathe., Computational, Physical Quantum Eng.
,
8
(
2
), pp.
331
334
.
11.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Batch
,
F.
,
2016
, “
An Evolutionary Computing Approach for Estimating Global Solar Radiation
,”
Proceedings of the 5th International Conference on Renewable Energy Research and Applications (ICRERA)
,
Birmingham
, pp.
285
290
.
12.
Antonanzas-Torres
,
F.
,
Sanz-Garcia
,
A.
,
Martínez-de-Pisón
,
F. J.
, and
Perpiñán-Lamigueiro
,
O.
,
2013
, “
Evaluation and Improvement of Empirical Models of Global Solar Irradiation: Case Study Northern Spain
,”
Renewable Energy
,
60
, pp.
604
614
. 10.1016/j.renene.2013.06.008
13.
Gairaa
,
K.
,
Chellali
,
F.
,
Benkaciali
,
S.
,
Messlem
,
Y.
, and
Abdallah
,
K.
,
2015
, “
Daily Global Solar Radiation Forecasting Over a Desert Area Using NAR Neural Networks Comparison With Conventional Methods
,”
Proceedings of 4th International Conference on Renewable Energy Research and Applications (ICRERA)
,
Palermo, Italy
, pp.
567
571
.
14.
Naim
,
H.
,
Fares
,
R.
,
Bouadi
,
A.
,
Hassini
,
A.
, and
Noureddine
,
B.
,
2020
, “
An Improved Model of Estimation Global Solar Irradiation From In Situ Data: Case of Algerian Oranie’s Region
,”
ASME J. Solar Energy Eng.
,
142
(
3
), p.
034501
. 10.1115/1.4045737
15.
Al-Hajj
,
R.
, and
Assi
,
A.
,
2017
, “
Estimating Solar Irradiance Using Genetic Programming Technique and Meteorological Records
,”
AIMS-Energy
,
5
(
5
), pp.
798
813
. 10.3934/energy.2017.5.798
16.
Mohammadi
,
K.
,
Shamshirband
,
S.
,
Kamsin
,
A.
,
Lai
,
P. C.
, and
Mansor
,
C.
,
2016
, “
Identifying the Most Significant Input Parameters for Predicting Global Solar Radiation Using an ANFIS Selection Procedure
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
423
434
. 10.1016/j.rser.2016.05.065
17.
Li
,
P.
,
Bessafi
,
M.
,
Morel
,
B.
,
Chabriat
,
J. P.
,
Delsaut
,
M.
, and
Li
,
Q.
,
2020
, “
Daily Surface Solar Radiation Prediction Mapping Using Artificial Neural Network: The Case Study of Reunion Island
,”
ASME J. Solar Energy Eng.
,
142
(
2
), p.
021009
. 10.1115/1.4045274
18.
Olatomiwa
,
L.
,
Mekhilef
,
S.
,
Shamshirband
,
S.
,
Mohammadi
,
K.
,
Petković
,
D.
, and
Sudheer
,
C.
,
2015
, “
A Support Vector Machine–Firefly Algorithm-Based Model for Global Solar Radiation Prediction
,”
Sol. Energy
,
115
, pp.
632
644
. 10.1016/j.solener.2015.03.015
19.
Makridakis
,
S.
,
Spiliotis
,
E.
, and
Assimakopoulos
,
V.
,
2018
, “
Statistical and Machine Learning Forecasting Methods: Concerns and Ways Forward
,”
PLoS One
,
13
(
3
), p.
e0194889
. 10.1371/journal.pone.0194889
20.
Yagli
,
G. M.
,
Yang
,
D.
, and
Srinivasan
,
D.
,
2019
, “
Automatic Hourly Solar Forecasting Using Machine Learning Models
,”
Renewable Sustainable Energy Rev.
,
105
, pp.
487
498
. 10.1016/j.rser.2019.02.006
21.
Fan
,
J.
,
Wu
,
L.
,
Zhang
,
F.
,
Cai
,
H.
,
Zeng
,
W.
,
Wang
,
X.
, and
Zou
,
H.
,
2019
, “
Empirical and Machine Learning Models for Predicting Daily Global Solar Radiation From Sunshine Duration: A Review and Case Study in China
,”
Renewable Sustainable Energy Rev.
,
100
, pp.
186
212
. 10.1016/j.rser.2018.10.018
22.
Sharma
,
A.
, and
Kakkar
,
A.
,
2018
, “
Forecasting Daily Global Solar Irradiance Generation Using Machine Learning
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
2254
2269
. 10.1016/j.rser.2017.08.066
23.
Wang
,
L.
,
Lu
,
Y.
,
Zou
,
L.
,
Feng
,
L.
,
Wei
,
J.
,
Qin
,
W.
, and
Niu
,
Z.
,
2019
, “
Prediction of Diffuse Solar Radiation Based on Multiple Variables in China
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
151
216
. 10.1016/j.rser.2018.12.029
24.
Wang
,
L.
,
Kisi
,
O.
,
Zounemat-Kermani
,
M.
,
Salazar
,
G. A.
,
Zhu
,
Z.
, and
Gong
,
W.
,
2016
, “
Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
384
397
. 10.1016/j.rser.2016.04.024
25.
Shang
,
C.
, and
Wei
,
P.
,
2018
, “
Enhanced Support Vector Regression Based Forecast Engine to Predict Solar Power Output
,”
Renewable Energy
,
127
, pp.
269
283
. 10.1016/j.renene.2018.04.067
26.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M.
,
2017
, “
A Predictive Evaluation of Global Solar Radiation Using Recurrent Neural Models and Weather Data
,”
Proceedings of 6th International Conference on Renewable Energy Research and Applications (ICRERA)
,
San Diego, CA
, pp.
195
199
.
27.
Abuella
,
M.
, and
Chowdhury
,
B.
,
2017
, “
Random Forest Ensemble of Support Vector Regression Models for Solar Power Forecasting
,”
Proceedings of the Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
, pp.
1
5
.
28.
Hou
,
M.
,
Zhang
,
T.
,
Weng
,
F.
,
Ali
,
M.
,
Al-Ansari
,
N.
, and
Yaseen
,
Z. M.
,
2018
, “
Global Solar Radiation Prediction Using Hybrid Online Sequential Extreme Learning Machine Model
,”
Energies
,
11
(
12
), p.
3415
. 10.3390/en11123415
29.
Ren
,
Y.
,
Suganthan
,
P. N.
, and
Srikanth
,
N.
,
2015
, “
Ensemble Methods for Wind and Solar Power Forecasting—A State-of-the-Art Review
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
82
91
. 10.1016/j.rser.2015.04.081
30.
Wang
,
Z.
, and
Srinivasan
,
R. S.
,
2017
, “
A Review of Artificial Intelligence Based Building Energy Use Prediction: Contrasting the Capabilities of Single and Ensemble Prediction Models
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
796
808
. 10.1016/j.rser.2016.10.079
31.
Linares-Rodriguez
,
A.
,
Ruiz-Arias
,
J. A.
,
Pozo-Vazquez
,
D.
, and
Tovar-Pescador
,
J.
,
2013
, “
An Artificial Neural Network Ensemble Model for Estimating Global Solar Radiation From Meteosat Satellite Images
,”
Energy
,
61
, pp.
636
645
. 10.1016/j.energy.2013.09.008
32.
Ahmed Mohammed
,
A.
, and
Aung
,
Z.
,
2016
, “
Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation
,”
Energies
,
9
(
12
), p.
1017
. 10.3390/en9121017
33.
Guo
,
J.
,
You
,
S.
,
Huang
,
C.
,
Liu
,
H.
,
Zhou
,
D.
,
Chai
,
J.
,
Wu
,
L.
,
Liu
,
Y.
,
Glass
,
J.
,
Gardner
,
M.
, and
Black
,
C.
,
2016
, “
An Ensemble Solar Power Output Forecasting Model Through Statistical Learning of Historical Weather Dataset
,”
Proceedings of Power and Energy Society General Meeting (PESGM)
,
Boston, MA
, pp.
1
5
.
34.
Yeboah
,
F. E.
,
Pyle
,
R.
, and
Hyeng
,
C. B. A.
,
2015
, “
Predicting Solar Radiation for Renewable Energy Technologies: A Random Forest Approach
,”
Int. J. Modern Eng.
,
16
(
1
), pp.
100
107
.
35.
Pan
,
C.
, and
Tan
,
J.
,
2019
, “
Day-Ahead Hourly Forecasting of Solar Generation Based on Cluster Analysis and Ensemble Model
,”
IEEE Access
,
7
, pp.
112921
112930
. 10.1109/ACCESS.2019.2935273
36.
Gala
,
Y.
,
Fernández
,
A.
,
Díaz
,
J.
, and
Dorronsoro
,
J. R.
,
2013
, “
Support Vector Forecasting of Solar Radiation Values
,”
Proceedings of the International Conference on Hybrid Artificial Intelligence Systems
,
Springer, Berlin
, pp.
51
60
.
37.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M. M.
,
2018
, “
Forecasting Solar Radiation Strength Using Machine Learning Ensemble
,”
Proceedings of the 7th International Conference on Renewable Energy Research and Applications (ICRERA)
,
Paris, France
, pp.
184
188
.
38.
Ren
,
Y.
,
Zhang
,
L.
, and
Suganthan
,
P. N.
,
2016
, “
Ensemble Classification and Regression-Recent Developments, Applications and Future Directions
,”
IEEE Computational Intelligence Magazine
,
11
(
1
), pp.
41
53
. 10.1109/MCI.2015.2471235
39.
Baba
,
N. M.
,
Makhtar
,
M.
,
Fadzli
,
S. A.
, and
Awang
,
M. K.
,
2015
, “
Current Issues in Ensemble Methods and Its Applications
,”
J. Theoretical Appl. Information Technol.
,
81
(
2
), p.
266
.
40.
Dietterich
,
T. G.
,
2000
, “
Ensemble Methods in Machine Learning
,”
Proceedings of the International Workshop on Multiple Classifier Systems-Springer
,
Berlin
, pp.
1
15
.
41.
Zhang
,
C.
, and
Ma
,
Y.
,
2012
,
Ensemble Machine Learning: Methods and Applications
,
Springer Science & Business Media
,
Boston, MA
.
42.
Khotanzad
,
A.
, and
Elragal
,
H.
,
1999
, “
Natural gas Load Forecasting With Combination of Adaptive Neural Networks
,”
Proceedings of International Joint Conference on Neural Networks IJCNN
,
Washington, DC
, Vol.
6
, pp.
4069
4072
.
43.
Pavlyshenko
,
B.
,
2018
, “
Using Stacking Approaches for Machine Learning Models
,”
Proceedings of the 2nd International Conference on Data Stream Mining & Processing (DSMP)
,
Ukraine
, pp.
255
258
.
44.
Bakos
,
K.
, and
Gamba
,
P.
,
2010
, “
Efficient Combination of Multiple Hyperspectral Data Processing Chains Using Binary Decision Trees
,”
Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
,
Iceland
, pp.
1
4
.
45.
Yankov
,
D.
,
DeCoste
,
D.
, and
Keogh
,
E.
,
2006
, “
Ensembles of Nearest Neighbor Forecasts
,”
Proceedings 17th European Conference on Machine Learning
,
Springer
,
Berlin
, pp.
545
556
.
46.
Devroye
,
L.
,
Gyorfi
,
L.
,
Krzyzak
,
A.
, and
Lugosi
,
G.
,
1994
, “
On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates
,”
Annals Statistics
,
22
(
3
), pp.
1371
1385
. 10.1214/aos/1176325633
47.
Breiman
,
L.
,
Friedman
,
J.
,
Stone
,
C. J.
, and
Olshen
,
R. A.
,
1984
,
Classification and Regression Trees
,
CRC Press
.
48.
Kotsiantis
,
S. B.
,
2013
, “
Decision Trees: A Recent Overview. Artificial Intelligence Review
,”
39
(
4
), pp.
261
283
. 10.1007/s10462-011-9272-4
49.
Esposito
,
F.
,
Malerba
,
D.
,
Semeraro
,
G.
, and
Kay
,
J.
,
1997
, “
A Comparative Analysis of Methods for Pruning Decision Trees
,”
IEEE Transactions on Pattern Analysis Mach. Intelligence
,
19
(
5
), pp.
476
491
. 10.1109/34.589207
50.
Fournier
,
D.
, and
Crémilleux
,
B.
,
2002
, “
A Quality Index for Decision Tree Pruning
,”
Knowledge-Based Systems
,
15
(
1–2
), pp.
37
43
. 10.1016/S0950-7051(01)00119-8
51.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Statistics Computing
,
14
(
3
), pp.
199
222
. 10.1023/B:STCO.0000035301.49549.88
52.
Haykin
,
S.
,
2011
,
Neural Networks and Learning Machines: A Comprehensive Foundation, Pearson
.
53.
Fausett
,
L. V.
,
1994
,
Fundamentals of Neural Networks: Architectures, Algorithms, And Applications. Pearson
.
54.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-parameter Optimization
,”
J. Mach. Learning Res.
,
13
(
2
), pp.
281
305
.
55.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Computation
,
9
(
8
), pp.
1735
1780
. 10.1162/neco.1997.9.8.1735
56.
Aslam
,
M.
,
Lee
,
J. M.
,
Kim
,
H. S.
,
Lee
,
S. J.
, and
Hong
,
S.
,
2020
, “
Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study
,”
Energies
,
13
(
1
), p.
147
. 10.3390/en13010147
57.
Yudantaka
,
K.
,
Kim
,
J. S.
, and
Song
,
H.
,
2020
, “
Dual Deep Learning Networks Based Load Forecasting With Partial Real-Time Information and Its Application to System Marginal Price Prediction
,”
Energies
,
13
(
1
), p.
148
. 10.3390/en13010148
58.
Zhao
,
Z.
,
Chen
,
W.
,
Wu
,
X.
,
Chen
,
P. C.
, and
Liu
,
J.
,
2017
, “
LSTM Network: A Deep Learning Approach for Short-Term Traffic Forecast
,”
IET Intelligent Transport Systems
,
11
(
2
), pp.
68
75
. 10.1049/iet-its.2016.0208
59.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
, and
Vanderplas
,
J.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learning Res.
,
12
, pp.
2825
2830
. 10.3389/fninf.2014.00014
60.
Lee Rodgers
,
J.
, and
Nicewander
,
W. A.
,
1988
, “
Thirteen Ways to Look at the Correlation Coefficient
,”
Am. Stat.
,
42
(
1
), pp.
59
66
. 10.1080/00031305.1988.10475524
61.
Zhang
,
D.
,
2017
, “
A Coefficient of Determination for Generalized Linear Models
,”
The American Statistician
,
71
(
4
), pp.
310
316
. 10.1080/00031305.2016.1256839
You do not currently have access to this content.