Abstract

This paper provides an improved method for predicting the I–V curve of the photovoltaic module using a hybrid machine learning system. The proposed method is based on a random forest algorithm and a cascade forward neural network. A random forest algorithm is used to predict a specific factor that is subsequently used as an input for the cascade neural network to remove the correlation between voltage and current. Then, the actual current is predicted using the cascade neural network. This procedure assures the ability of the proposed model to extract the I–V curve of any photovoltaic module regardless of its rating or type. A dataset that contains values for air temperature, solar radiation, voltage, and current of two polycrystalline photovoltaic modules is used in the training process of the proposed algorithm. The hybrid model has general inputs such as ambient temperature, solar radiation, and data from the photovoltaic module datasheet (Voc and Isc). The proposed model is trained, tested, and validated by 86% of the data. Meanwhile, 14% of the data are used for testing. Thus, the proposed model is tested using unknown data so as to avoid overfitting. Results show that the proposed model is very accurate in predicting I–V curves based on three types of errors which are mean absolute percentage error (0.68%), mean bias error (0.0191 A), and root-mean-squared error (0.04458 A). This hybrid model can be used to obtain the I–V curves for several types of photovoltaic modules.

References

1.
Khatib
,
T.
, and
Elmenreich
,
W.
,
2016
,
Modeling of Photovoltaic Systems Using MATLAB: Simplified Green Codes
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Ram
,
J. P.
,
Manghani
,
H.
,
Pillai
,
D. S.
,
Babu
,
T. S.
,
Miyatake
,
M.
, and
Rajasekar
,
N.
,
2018
, “
Analysis on Solar PV Emulators: A Review
,”
Renew. Sustain. Energy Rev.
,
81
(Part 1)
, pp.
149
160
. 10.1016/j.rser.2017.07.039
3.
Khatib
,
T.
,
Ghareeb
,
A.
,
Tamimi
,
M.
,
Jaber
,
M.
, and
Jaradat
,
S.
,
2018
, “
A New Offline Method for Extracting I-V Characteristic Curve for Photovoltaic Modules Using Artificial Neural Networks
,”
Sol. Energy
,
173
, pp.
462
469
. 10.1016/j.solener.2018.07.092
4.
Liu
,
L.
,
Liu
,
W.
,
Zhang
,
X.
, and
Ingenhoff
,
J.
,
2018
, “
An Novel Explicit Model for Photovoltaic I-V Characteristic Prediction Based on Different Splitting Spectrum
,”
Preprints
. 10.20944/preprints201808.0248.v1
5.
Duran
,
E.
,
Piliougine
,
M.
,
Sidrach-de-Cardona
,
M.
,
Galan
,
J.
, and
Andujar
,
J. M.
,
2008
, “
Different 394 Methods to Obtain the I-V Curve of PV Modules: A Review
,”
Proceedings of the 33rd IEEE Photovoltaic Specialists Conference (PVSC ‘08)
,
San Diego, CA
,
May 16
, pp.
1
6
.
6.
Basu Pal
,
S.
,
Das
,
A.
,
Das
,
K.
, and
Mukherjee
,
D.
,
2019
, “
Design of a Low-Cost Measuring and Plotting Device for Photovoltaic Modules
,”
Meas. Control
,
52
(
9–10
), pp.
1308
1318
.
10.1177/0020294019865752
7.
Kuai
,
Y.
, and
Yuvarajan
,
S.
,
2006
, “
An Electronic Load for Testing Photovoltaic Panels
,”
J. Power Sources
,
154
(
1
), pp.
308
313
. 10.1016/j.jpowsour.2005.04.016
8.
Khatib
,
T.
,
Elmenreich
,
W.
, and
Mohamed
,
A.
,
2017
, “
Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter
,”
Sustainability
,
9
(
4
), p.
4
. 10.3390/su9040657
9.
Dizqah
,
A. M.
,
Maheri
,
A.
, and
Busawon
,
K.
,
2014
, “
An Accurate Method for the PV Model Identification Based on a Genetic Algorithm and the Interior-Point Method
,”
Renew. Energy
,
72
, pp.
212
222
. 10.1016/j.renene.2014.07.014
10.
Moldovan
,
N.
,
Picos
,
R.
, and
Garcia-Moreno
,
E.
,
2009
, “
Parameter Extraction of a Solar Cell Compact Model Using Genetic Algorithms
,”
Spanish Conference on Electron Devices, CDE
,
Feb. 11–13
, pp.
379
382
.
11.
Ismail
,
M. S.
,
Moghavvemi
,
M.
, and
Mahlia
,
T. M. I.
,
2013
, “
Characterization of PV Panel and Global Optimization of Its Model Parameters Using Genetic Algorithm
,”
Energy Convers. Manag.
,
73
, pp.
10
25
. 10.1016/j.enconman.2013.03.033
12.
Zagrouba
,
M.
,
Sellami
,
A.
,
Bouaïcha
,
M.
, and
Ksouri
,
M.
,
2010
, “
Identification of PV Solar Cells and Modules Parameters Using the Genetic Algorithms: Application to Maximum Power Extraction
,”
Sol. Energy
,
84
(
5
), pp.
860
866
. 10.1016/j.solener.2010.02.012
13.
Appelbaum
,
J.
, and
Peled
,
A.
,
2014
, “
Parameters Extraction of Solar Cells—A Comparative Examination of Three Methods
,”
Sol. Energy Mater. Sol. Cells
,
122
, pp.
164
173
. 10.1016/j.solmat.2013.11.011
14.
Jervase
,
J. A.
,
Bourdoucen
,
H.
, and
Al-Lawati
,
A.
,
2001
, “
Solar Cell Parameter Extraction Using Genetic Algorithms
,”
Meas. Sci. Technol.
,
12
(
11
), pp.
1922
1925
. 10.1088/0957-0233/12/11/322
15.
Khanna
,
V.
,
Das
,
B. K.
,
Bisht
,
D.
, and
Vandana, Singh
,
P. K.
,
2015
, “
A Three Diode Model for Industrial Solar Cells and Estimation of Solar Cell Parameters Using PSO Algorithm
,”
Renew. Energy
,
78
, pp.
105
113
. 10.1016/j.renene.2014.12.072
16.
Ye
,
M.
,
Wang
,
X.
, and
Xu
,
Y.
,
2009
, “
Parameter Extraction of Solar Cells Using Particle Swarm Optimization
,”
J. Appl. Phys.
,
105
(
9
), p.
094502
. 10.1063/1.3122082
17.
Jing Jun
,
S.
, and
Kay-Soon
,
L.
,
2012
, “
Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint
,”
IEEE Trans. Power Electron.
,
27
(
9
), pp.
3975
3983
. 10.1109/TPEL.2012.2188818
18.
Alam
,
D. F.
,
Yousri
,
D. A.
, and
Eteiba
,
M. B.
,
2015
, “
Flower Pollination Algorithm Based Solar PV Parameter Estimation
,”
Energy Convers. Manag.
,
101
, pp.
410
422
. 10.1016/j.enconman.2015.05.074
19.
Hasanien
,
H. M.
,
2015
, “
Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification
,”
IEEE Trans. Sustain. Energy
,
6
(
2
), pp.
509
515
. 10.1109/TSTE.2015.2389858
20.
Ishaque
,
K.
,
Salam
,
Z.
,
Taheri
,
H.
, and
Shamsudin
,
A.
,
2011
, “
A Critical Evaluation of EA Computational Methods for Photovoltaic Cell Parameter Extraction Based on Two Diode Model
,”
Sol. Energy
,
85
(
9
), pp.
1768
1779
. 10.1016/j.solener.2011.04.015
21.
Ishaque
,
K.
, and
Salam
,
Z.
,
2011
, “
An Improved Modeling Method to Determine the Model Parameters of Photovoltaic (PV) Modules Using Differential Evolution (DE)
,”
Sol. Energy
,
85
(
9
), pp.
2349
2359
. 10.1016/j.solener.2011.06.025
22.
Ishaque
,
K.
,
Salam
,
Z.
,
Mekhilef
,
S.
, and
Shamsudin
,
A.
,
2012
, “
Parameter Extraction of Solar Photovoltaic Modules Using Penalty-Based Differential Evolution
,”
Appl. Energy
,
99
, pp.
297
308
. 10.1016/j.apenergy.2012.05.017
23.
Jiang
,
L. L.
,
Maskell
,
D. L.
, and
Patra
,
J. C.
,
2013
, “
Parameter Estimation of Solar Cells and Modules Using an Improved Adaptive Differential Evolution Algorithm
,”
Appl. Energy
,
112
, pp.
185
193
. 10.1016/j.apenergy.2013.06.004
24.
Gong
,
W.
, and
Cai
,
Z.
,
2013
, “
Parameter Extraction of Solar Cell Models Using Repaired Adaptive Differential Evolution
,”
Sol. Energy
,
94
, pp.
209
220
. 10.1016/j.solener.2013.05.007
25.
Siddiqui
,
M. U.
, and
Abido
,
M.
,
2013
, “
Parameter Estimation for Five- and Seven-Parameter Photovoltaic Electrical Models Using Evolutionary Algorithms
,”
Appl. Soft Comput.
,
13
(
12
), pp.
4608
4621
. 10.1016/j.asoc.2013.07.005
26.
Muhsen
,
D. H.
,
Ghazali
,
A. B.
,
Khatib
,
T.
, and
Abed
,
I. A.
,
2015
, “
Parameters Extraction of Double Diode Photovoltaic Module’s Model Based on Hybrid Evolutionary Algorithm
,”
Energy Convers. Manag.
,
105
, pp.
552
561
. 10.1016/j.enconman.2015.08.023
27.
Muhsen
,
D. H.
,
Ghazali
,
A. B.
,
Khatib
,
T.
, and
Abed
,
I. A.
,
2016
, “
A Comparative Study of Evolutionary Algorithms and Adapting Control Parameters for Estimating the Parameters of a Single-Diode Photovoltaic Module's Model
,”
Renew. Energy
,
96
, pp.
377
389
. 10.1016/j.renene.2016.04.072
28.
Nunes
,
H. G. G.
,
Pombo
,
J. A. N.
,
Mariano
,
S. J. P. S.
,
Calado
,
M. R. A.
, and
Felippe de Souza
,
J. A. M.
,
2018
, “
A New High Performance Method for Determining the Parameters of PV Cells and Modules Based on Guaranteed Convergence Particle Swarm Optimization
,”
Appl. Energy
,
211
, pp.
774
791
. 10.1016/j.apenergy.2017.11.078
29.
Yang
,
B.
,
Wang
,
J.
,
Zhang
,
X.
,
Yu
,
T.
,
Yao
,
W.
,
Shu
,
H.
,
Zeng
,
F.
, and
Sun
,
L.
,
2020
, “
Comprehensive Overview of Meta-Heuristic Algorithm Applications on PV Cell Parameter Identification
,”
Energy Convers. Manag.
,
208
, p.
112595
. 10.1016/j.enconman.2020.112595
30.
Xu
,
X.
,
Zhang
,
X.
,
Huang
,
Z.
,
Xie
,
S.
,
Gu
,
W.
,
Wang
,
X.
, and
Zhang
,
Z.
,
2019
, “
Current Characteristics Estimation of Si PV Modules Based on Artificial Neural Network Modeling
,”
Materials
,
12
(
18
), p.
3037
. 10.3390/ma12183037
31.
Li
,
J.
,
Li
,
R.
,
Jia
,
Y.
, and
Zhang
,
Z.
,
2020
, “
Prediction of I–V Characteristic Curve for Photovoltaic Modules Based on Convolutional Neural Network
,”
Sensors
,
20
(
7
), p.
2119
. 10.3390/s20072119
32.
Karatepe
,
E.
,
Boztepe
,
M.
, and
Colak
,
M.
,
2006
, “
Neural Network Based PV Module Model
,”
Energy Convers. Manag.
,
47
(
9–10
), pp.
1159
1178
. 10.1016/j.enconman.2005.07.007
33.
Celik
,
A. N.
,
2011
, “
Artificial Neural Network Modelling and Experimental Verification of the Operating Current of Mono-Crystalline Photovoltaic Modules
,”
Sol. Energy
,
85
(
10
), pp.
2507
2517
. 10.1016/j.solener.2011.07.009
34.
Bonanno
,
F.
,
Capizzi
,
G.
,
Napoli
,
C.
,
Graditi
,
G.
, and
Tina
,
G.
,
2012
, “
A Radial Basis Function Neural Network Approach for the Electrical Characteristics Estimation of a Photovoltaic Module
,”
Appl. Energy
,
97
, pp.
956
961
. 10.1016/j.apenergy.2011.12.085
35.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
. 10.1023/A:1010933404324
36.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
. 10.1007/BF00058655
37.
Van Dyk
,
E.
,
Gxasheka
,
A.
, and
Meyer
,
E.
,
2005
, “
Monitoring Current-Voltage Characteristics and Energy Output of Silicon Photovoltaic Modules
,”
Renew. Energy
,
30
(
3
), pp.
399
411
. 10.1016/j.renene.2004.04.016
38.
Hassabou
,
A.
, and
Abotaleb
,
A.
,
2017
, “
Amir Abdallah Passive Thermal Management of Photovoltaic Modules—Mathematical Modeling and Simulation of Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061010
. 10.1115/1.4037384
39.
Sirjani
,
R.
, and
Shareef
,
H.
,
2016
, “
Parameter Extraction of Solar Cell Models Using the Lightning Search Algorithm in Different Weather Conditions
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041007
. 10.1115/1.4033333
40.
Can
,
H.
, and
Ickilli
,
D.
,
2014
, “
Parameter Estimation in Modeling of Photovoltaic Panels Based on Datasheet Values
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021002
. 10.1115/1.4024923
41.
Mahmoud
,
M.
,
2006
, “
Transient Analysis of a PV Power Generator Charging a Capacitor for Measurement of the I-V Characteristics
,”
Renew. Energy
,
31
(
13
), pp.
2198
2206
. 10.1016/j.renene.2005.09.019
42.
Muñoz
,
J.
, and
Lorenzo
,
E.
,
2006
, “
Capacitive Load Based on IGBTs for On-Site Characterization of PV Arrays
,”
Sol. Energy
,
80
(
11
), pp.
1489
1497
. 10.1016/j.solener.2005.09.013
43.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
,
2014
, “
Development of a Model to Simulate the Performance Characteristics of Crystalline Silicon Photovoltaic Modules/Strings/Arrays
,”
Sol. Energy
,
100
, pp.
31
41
. 10.1016/j.solener.2013.12.003
44.
Tossa
,
A. K.
,
Soro
,
Y. M.
,
Azoumah
,
Y.
, and
Yamegueu
,
D.
,
2014
, “
A New Approach to Estimate the Performance and Energy Productivity of Photovoltaic Modules in Real Operating Conditions
,”
Sol. Energy
,
110
, pp.
543
560
. 10.1016/j.solener.2014.09.043
45.
Easwarakhanthan
,
T.
,
Bottin
,
J.
,
Bouhouch
,
I.
, and
Boutrit
,
C.
,
1986
, “
Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters With Microcomputers
,”
Int. J. Sol. Energy
,
4
(
1
), pp.
1
12
. 10.1080/01425918608909835
46.
Navabi
,
R.
,
Abedi
,
S.
,
Hosseinian
,
S. H.
, and
Pal
,
R.
,
2015
, “
On the Fast Convergence Modeling and Accurate Calculation of PV Output Energy for Operation and Planning Studies
,”
Energy Convers. Manag.
,
89
, pp.
497
506
. 10.1016/j.enconman.2014.09.070
47.
Hejri
,
M.
,
Mokhtari
,
H.
,
Azizian
,
M. R.
,
Ghandhari
,
M.
, and
Soder
,
L.
,
2014
, “
On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules
,”
IEEE J. Photovolt.
,
4
(
3
), pp.
915
923
. 10.1109/JPHOTOV.2014.2307161
48.
Villalva
,
M. G.
,
Gazoli
,
J. R.
, and
Filho
,
E. R.
,
2009
, “
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays
,”
IEEE Trans. Power Electron.
,
24
(
5
), pp.
1198
1208
. 10.1109/TPEL.2009.2013862
49.
Sharma
,
N.
, and
Varun
,
S.
,
2012
, “
Stochastic Techniques Used for Optimization in Solar Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
16
(
3
), pp.
1399
1411
. 10.1016/j.rser.2011.11.019
You do not currently have access to this content.