Abstract

The potential enhancement of extract from Mimosa pudica (M. pudica) leaf for sensitizing TiO2 layer toward the production of the organic solar cell is investigated. A unique diffusion model that incorporates the concentration of the extract in the TiO2 layer is adopted. The diffusion characterization of the extract into the TiO2 provides a proper understanding of the dynamics of the extract within the layer. This research applies the combination of experimental and numerical techniques toward the investigation of the diffusion characteristics in M. pudica extract. Experimental chromatograph of the extract is conducted in order to reveal the properties and concentration of the extract. Three different thicknesses of TiO2 deposit are sensitized at different hours in order to monitor the absorbance. Using the finite volume method (FVM), the adsorption and diffusion characteristics of the extract into the layer of TiO2 are modeled. The current–voltage characteristics of the cell are combined in series as a standard module and applied to an audited office space. The cell area characterized is 0.3848 cm2, and the conversion efficiency of 1.35% is obtained. The concentration model of the extract in TiO2 and the entrance velocity is presented. The experimental and numerical results compared favorably. However, it is anticipated that additional taxonomical characterization of M. pudica and advanced investigation into organic matrix composite will provide a useful guide for the synthesis of the natural dye and enhance the conversion efficiency of the solar module for renewable power generation.

References

1.
Grätzel
,
M.
,
2001
, “
Photoelectrochemical Cells
,”
Nature
,
414
(
6861
), p.
338
. 10.1038/35104607
2.
Ye
,
M.
,
Wen
,
X.
,
Wang
,
M.
,
Iocozzia
,
J.
,
Zhang
,
N.
,
Lin
,
C.
, and
Lin
,
Z.
,
2015
, “
Recent Advances in Dye-Sensitized Solar Cells: From Photoanodes, Sensitizers and Electrolytes to Counter Electrodes
,”
Mater. Today
,
18
(
3
), pp.
155
162
. 10.1016/j.mattod.2014.09.001
3.
Senthil
,
R.
, and
Yuvaraj
,
S.
,
2018
, “
A Comprehensive Review on Bioinspired Solar Photovoltaic Cells
,”
Energy Res.
,
43
(
3
), pp.
1068
1081
. 10.1002/er.4255
4.
Parmar
,
K.
,
Kianimanesh
,
A.
,
Freiheit
,
T.
, and
Park
,
S. S.
,
2013
, “
Design Enhancements for High Performance Dye-Sensitized Solar Cells
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031011
. 10.1115/1.4023517
5.
Seo
,
H.
,
Son
,
M.
,
Kim
,
J.
,
Shin
,
I.
,
Prabakar
,
K.
, and
Kim
,
H.
,
2011
, “
Method for Fabricating the Compact Layer in Dye Sensitized Solar Cells by Titanium Sputter Deposition and Acid Treatment
,”
Sol. Energy Mater. Sol. Cells
,
95
(
1
), pp.
340
343
. 10.1016/j.solmat.2010.05.001
6.
Cheng
,
P.
, and
Zhan
,
X.
,
2016
, “
Stability of Organic Solar Cells: Challenges and Strategies
,”
Chem. Soc. Rev.
,
45
(
9
), pp.
2544
2582
. 10.1039/C5CS00593K
7.
Zouhri
,
K.
,
2018
, “
The Effect of Iodide and Tri-Iodide on the Dye Sensitized Solar Cell
,”
Renew. Energy
,
126
, pp.
210
225
. 10.1016/j.renene.2018.03.045
8.
Sengupta
,
D.
,
Das
,
P.
,
Mondal
,
B.
, and
Mukherjee
,
K.
,
2016
, “
Effects of Doping, Morphology and Film-Thickness of Photo-Anode Materials for Dye Sensitized Solar Cell Application—A Review
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
356
376
. 10.1016/j.rser.2016.01.104
9.
Tiwana
,
P.
,
Docampo
,
P.
,
Johnston
,
M. B.
,
Snaith
,
H. J.
, and
Herz
,
L. M.
,
2011
, “
Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye Sensitized Solar Cells
,”
ACS Nano
,
5
(
6
), pp.
5158
5166
. 10.1021/nn201243y
10.
Sengupta
,
D.
,
Das
,
P.
,
Kasinadhuni
,
V.
,
Mondal
,
B.
, and
Mukherjee
,
K.
,
2014
, “
Morphology Induced Light Scattering by Zinc Oxide Polydisperse Particles: Promising for Dye Sensitized Solar Cell Application
,”
J. Renew. Sustain. Energy
,
6
(
6
), p.
063114
. 10.1063/1.4904435
11.
Inamdar
,
Y.
,
Beedri
,
N.
,
Kodam
,
K.
,
Shaikh
,
A.
, and
Pathan
,
H.
,
2015
, “
Aggregation of ZnO Nanocrystalline Using Polyol Process for Dye (Reactive Red) Sensitized Solar Cell
,”
Macromol. Symp.
,
347
(
1
), pp.
52
57
. 10.1002/masy.201400047
12.
Barpuzary
,
D.
,
Banik
,
A.
,
Panda
,
A. N.
, and
Qureshi
,
M.
,
2015
, “
Mimicking the Heteroleptic Dyes for an Efficient 1D-ZnO Based Dye-Sensitized Solar Cell Using the Homoleptic Ruthenium(II) Dipyridophenazine Complex as a Photosensitizer
,”
J. Phys. Chem. C
,
119
(
8
), pp.
3892
3902
. 10.1021/jp510422d
13.
Lin
,
L.
,
Peng
,
X.
,
Chen
,
S.
,
Zhang
,
B.
, and
Feng
,
Y.
,
2015
, “
Preparation of Diverse Flower-Like ZnO Nanoaggregates for Dye-Sensitized Solar Cells
,”
RSC Adv.
,
5
(
32
), pp.
25215
25221
. 10.1039/C5RA01938A
14.
Asdim
,
A.
,
Manseki
,
K.
,
Sugiura
,
T.
, and
Yoshida
,
T.
,
2014
, “
Microwave Synthesis of Size-Controllable SnO2 Nanocrystals for Dye Sensitized Solar Cells
,”
New J. Chem.
,
38
(
2
), pp.
598
603
. 10.1039/c3nj01278f
15.
Song
,
H.
,
Son
,
S.-Y.
,
Kim
,
S. K.
, and
Jung
,
G. Y.
,
2015
, “
A Facile Synthesis of Hierarchical Sn3O4 Nanostructures in an Acidic Aqueous Solution and Their Strong Visible-Light-Driven Photocatalytic Activity
,”
Nano Res.
,
8
(
11
), pp.
3553
3561
. 10.1007/s12274-015-0855-2
16.
Ghosh
,
R.
,
Brennaman
,
M. K.
,
Uher
,
T.
,
Ok
,
M.-R.
,
Samulski
,
E. T.
,
McNeil
,
L. E.
,
Meyer
,
T. J.
, and
Lopez
,
R.
,
2011
, “
Nanoforest Nb2O5 Photoanodes for Dye-Sensitized Solar Cells by Pulsed Laser Deposition
,”
ACS Appl. Mater. Interfaces
,
3
(
10
), pp.
3929
3935
. 10.1021/am200805x
17.
Jin
,
X.
,
Liu
,
C.
,
Xu
,
J.
,
Wang
,
Q.
, and
Chen
,
D.
,
2014
, “
Size-Controlled Synthesis of Mesoporous Nb2O5 Microspheres for Dye Sensitized Solar Cells
,”
RSC Adv.
,
4
(
67
), pp.
35546
35553
. 10.1039/C4RA06101B
18.
Suresh
,
S.
,
Unni
,
G. E.
,
Satyanarayana
,
M.
,
Nair
,
A. S.
, and
Pillai
,
V. P. M.
,
2018
, “
Silver Nanoparticles-Incorporated Nb2O5 Surface Passivation Layer for Efficiency Enhancement in Dye-Sensitized Solar Cells
,”
J. Colloid Interface Sci.
,
524
, pp.
236
244
. 10.1016/j.jcis.2018.03.086
19.
Usha
,
K.
,
Mondal
,
B.
,
Sengupta
,
D.
,
Das
,
P.
,
Mukherjee
,
K.
, and
Kumbhakar
,
P.
,
2014
, “
Development of Multi-Layered Nanocrystalline TiO2 Thin Films for Photovoltaic Application
,”
Opt. Mater.
,
36
(
6
), pp.
1070
1075
. 10.1016/j.optmat.2014.01.037
20.
Kazmi
,
S. A.
,
Hameed
,
S.
,
Ahmed
,
A. S.
,
Arshad
,
M.
, and
Azam
,
A.
,
2017
, “
Electrical and Optical Properties of Graphene-TiO2 Nanocomposite and Its Applications in Dye Sensitized Solar Cells (DSSC)
,”
J. Alloys Compd.
,
691
, pp.
659
665
. 10.1016/j.jallcom.2016.08.319
21.
Tehare
,
K. K.
,
Navale
,
S. T.
,
Stadler
,
F. J.
,
He
,
Z.
,
Yang
,
H.
,
Xiong
,
X.
,
Liu
,
X.
, and
Mane
,
R. S.
,
2018
, “
Enhanced DSSCs Performance of TiO2 Nanostructure by Surface Passivation Layers
,”
Mater. Res. Bull.
,
99
, pp.
491
495
. 10.1016/j.materresbull.2017.11.046
22.
Umale
,
S.
,
Sudhakar
,
V.
,
Sontakke
,
S. M.
,
Krishnamoorthy
,
K.
, and
Pandit
,
A. B.
,
2019
, “
Improved Efficiency of DSSC Using Combustion Synthesized TiO2
,”
Mater. Res. Bull.
,
109
, pp.
222
226
. 10.1016/j.materresbull.2018.09.044
23.
Kruse
,
O.
,
Rupprecht
,
J.
,
Mussgnug
,
J. H.
,
Dismukes
,
G. C.
, and
Hankamer
,
B.
,
2005
, “
Photosynthesis: A Blueprint for Solar Energy Capture and Biohydrogen Production Technologies
,”
Photochem. Photobiol. Sci.
,
4
(
12
), pp.
957
970
. 10.1039/B506923H
24.
Zhang
,
N.
,
Yang
,
M.-Q.
,
Liu
,
S.
,
Sun
,
Y.
, and
Xu
,
Y.-J.
,
2015
, “
Waltzing With the Versatile Platform of Graphene to Synthesize Composite Photocatalysts
,”
Chem. Rev.
,
115
(
18
), pp.
10307
10377
. 10.1021/acs.chemrev.5b00267
25.
Chiu
,
Y.-H.
, and
Hsu
,
Y.-J.
,
2017
, “
Au@Cu7S4 Yolk@Shell Nanocrystal-Decorated TiO2 Nanowires as an All-Dayactive Photocatalyst for Environmental Purification
,”
Nano Energy
,
31
, pp.
286
295
. 10.1016/j.nanoen.2016.11.036
26.
Subalakshmi
,
K.
, and
Senthilselvan
,
J.
,
2018
, “
Effect of Fluorine-Doped TiO2 Photoanode on Electron Transport, Recombination Dynamics and Improved DSSC Efficiency
,”
Sol. Energy
,
171
, pp.
914
928
. 10.1016/j.solener.2018.06.077
27.
Suriani
,
A. B.
,
Muqoyyanah
,
M.
,
Mamat
,
A.
,
Hashim
,
M. H.
,
Isa
,
N.
,
Malek
,
I. M.
,
Kairi
,
M. F.
,
Mohamed
,
M. I.
,
and Ahmad
,
A. R.
, and
K
,
M.
,
2019
, “
Improving the Photovoltaic Performance of DSSCs Using a Combination of Mixed PhaseTiO2 Nanostructure Photoanode and Agglomerated Free Reduced Graphene Oxide Counter Electrode Assisted With Hyper Branched Surfactant
,”
Optik
,
158
, pp.
522
534
. 10.1016/j.ijleo.2017.12.149
28.
Chou
,
T. P.
,
Zhang
,
Q.
, and
Cao
,
G.
,
2007
, “
Effects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells
,”
J. Phys. Chem. C
,
111
(
50
), pp.
18804
18811
. 10.1021/jp076724f
29.
Li
,
Y.
,
Li
,
W.
,
Liu
,
Z.
,
Xie
,
R.
, and
Shang
,
J. K.
,
2010
, “
Memory Antibacterial Effect From Photoelectron Transfer Between Nanoparticles and Visible Light Photocatalyst
,”
J. Mater. Chem.
,
20
(
6
), pp.
1068
1072
. 10.1039/B917239D
30.
Chiou
,
Y.-D.
, and
Hsu
,
Y.-J.
,
2011
, “
Room-Temperature Synthesis of Single-Crystalline Se Nanorods With Remarkable Photocatalytic Properties
,”
Appl. Catal., B
,
105
(
1–2
), pp.
211
219
. 10.1016/j.apcatb.2011.04.019
31.
Zatsepin
,
D. A.
,
Boukhvalov
,
D. W.
,
Kurmaev
,
E. Z.
,
Gavrilov
,
N. V.
,
Kim
,
S. S.
, and
Zhidkov
,
I. S.
,
2016
, “
Pleomorphic Structural Imperfections Caused by Pulsed Bi-Implantation in the Bulk and Thin-Film Morphologies of TiO2
,”
Appl. Surf. Sci.
,
379
, pp.
223
229
. 10.1016/j.apsusc.2016.04.045
32.
Zatsepin
,
D. A.
,
Boukhvalov
,
D. W.
,
Gavrilov
,
N. V.
,
Zatsepin
,
A. F.
,
Shur
,
V. Y.
,
Esin
,
A. A.
,
Kim
,
S. S.
, and
Kurmaev
,
E. Z.
,
2017
, “
Soft Electronic Structure Modulation of Surface (Thin-Film) and Bulk (Ceramics) Morphologies of TiO2-Host by Pb-Implantation: XPS-and-DFT Characterization
,”
Appl. Surf. Sci.
,
400
, pp.
110
117
. 10.1016/j.apsusc.2016.12.154
33.
Gao
,
J.
,
El-Zohry
,
A. M.
,
Trilaksana
,
H.
,
Gabrielsson
,
E.
,
Leandri
,
V.
,
Ellis
,
H.
,
D’Amario
,
L.
,
Safdari
,
M.
,
Gardner
,
J. M.
,
Andersson
,
G.
, and
Kloo
,
L.
,
2018
, “
Light-Induced Interfacial Dynamics Dramatically Improve ThePhotocurrent in Dye-Sensitized Solar Cells: An Electrolyte Effect
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26241
26247
. 10.1021/acsami.8b06897
34.
O'Regan
,
B.
, and
Grätzel
,
M.
,
1991
, “
A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films
,”
Nature
,
353
(
6346
), pp.
737
740
. 10.1038/353737a0
35.
Ozawa
,
H.
,
Sugiura
,
T.
,
Kuroda
,
T.
,
Nozawa
,
K.
, and
Arakawa
,
H.
,
2016
, “
Highly Efficient Dye-Sensitized Solar Cells Based on a Ruthenium Sensitizer Bearing a Hexylthiophene Modified Terpyridine Ligand
,”
J. Mater. Chem. A
,
4
(
5
), pp.
1762
1770
. 10.1039/C5TA10393B
36.
Cheng
,
Y.
,
Yang
,
G.
,
Jiang
,
H.
,
Zhao
,
S.
,
Liu
,
Q.
, and
Xie
,
Y.
,
2018
, “
Organic Sensitizers With Extended Conjugation Frameworks as Cosensitizers of Porphyrins for Developing Efficient Dye-Sensitized Solar Cells
,”
ACS Appl. Mater. Interfaces
,
10
(
45
), pp.
38880
38891
. 10.1021/acsami.8b12883
37.
Maurya
,
I. C.
,
Gupta
,
A. K.
,
Srivastava
,
P.
, and
Bahadur
,
L.
,
2016
, “
Natural Dye Extracted From Saraca Asoca Flowers as Sensitizer for TiO2-Based Dye-Sensitized Solar Cell
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051006
. 10.1115/1.4034028
38.
Ludin
,
N. A.
,
Mahmoud
,
A. M. A.
,
Mohamad
,
A. B.
,
Kadhum
,
A. A. H.
,
Sopian
,
K.
, and
AbdulKarim
,
N. S.
,
2014
, “
Review on the Development of Natural Dye Photosensitizer for Dye-Sensitized Solar Cells
,”
Renew. Sustain. Energy Rev.
,
31
, pp.
386
396
. 10.1016/j.rser.2013.12.001
39.
Sang-aroon
,
W.
,
Tontapha
,
S.
, and
Amornkitbamrung
,
V.
,
2019
, “Photovoltaic Performance of Natural Dyes for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study,”
Dye-Sensitized Solar Cells
,
Academic Press
, pp.
203
229
.
40.
Hosseinpanahi
,
K.
,
Abbaspour-Fard
,
M. H.
,
Feizy
,
J.
, and
Reza Golzarian
,
M.
,
2017
, “
Dye-Sensitized Solar Cell Using Saffron Petal Extract as a Novel Natural Sensitizer
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021009
. 10.1115/1.4034908
41.
Shitta
,
M. B.
, and
Ogedengbe
,
E. O. B.
,
2016
, “
Performance Modelling of Mimosa pudica Extract as a Sensitizer for Solar Energy Conversion
,”
Energy Policy Res.
,
3
(
1
), pp.
42
49
. 10.1080/23815639.2016.1255859
42.
Ragoussi
,
M.
,
Ince
,
M.
, and
Torres
,
T.
,
2013
, “
Recent Advances in Phthalocyanine-Based Sensitizers for Dye-Sensitized Solar Cells
,”
Eur. J. Org. Chem.
,
2013
(
29
), pp.
6475
6489
. 10.1002/ejoc.201301009
43.
Sharma
,
G. D.
,
Angaridis
,
P. A.
,
Pipou
,
S.
,
Zervaki
,
G. E.
,
Nikolaou
,
V.
,
Misra
,
R.
, and
Coutsolelos
,
A. G.
,
2015
, “
Efficient Co-Sensitization of Dye-Sensitize Solar Cells by Novel Porphyrin/Triazin Dye and Tertiary Aryle-Amine Organic Dye
,”
Org. Electron.
,
25
, pp.
295
307
. 10.1016/j.orgel.2015.06.048
44.
Hu
,
Y.
,
Yellappa
,
S.
,
Thomas
,
M. B.
,
Waruna Jinadasa
,
R. G.
,
Matus
,
A.
,
Shulman
,
M.
,
D'Souza
,
F.
, and
Wang
,
H.
,
2017
, “
β-Functionalized Push–Pull Opp-Dibenzoporphyrins as Sensitizers for Dye-Sensitized Solar Cells
,”
Chem. – Asian J.
,
12
(
20
), pp.
2749
2762
. 10.1002/asia.201701117
45.
Lee
,
C.
,
Kang
,
W.
,
Ko
,
M. J.
,
Kim
,
K.
, and
Park
,
N. G.
,
2010
, “
Study on the Change in Photovoltage by Control of Cell Gap in Dye-Sensitized Solar Cells
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021104
. 10.1115/1.4001151
46.
Maddah
,
H. A.
,
Berry
,
V.
, and
Behura
,
S. J.
,
2020
, “
Biomolecular Photosensitizers for Dye-Sensitized Solar Cells: Recent Developments and Critical Insights
,”
Renew. Sustain. Energy Rev.
,
121
, pp.
109678
. 10.1016/j.rser.2019.109678
47.
Shitta
,
M. B.
, and
Ogedengbe
,
E. O. B.
,
2015
, “
Flow Modeling of Excess Carriers Between the Microchannel of an Organic Photovoltaic Cell
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA 2015-4126)
,
Orlando, FL
.
48.
Kannan
,
U. M.
,
Giribabu
,
L.
, and
Jammalamadaka
,
S. N.
,
2019
, “
Demagnetization Field Driven Charge Transport in a TiO2 Based Dye Sensitized Solar Cell
,”
Sol. Energy.
,
187
, pp.
281
289
. 10.1016/j.solener.2019.05.029
49.
Wu
,
Q. Z.
,
2015
, “
Magnetic Transport Properties of DB TAA-Based Nanodevices With Graphene Nanoribbon Electrode
,”
Org. Electron.
,
25
, pp.
308
316
. 10.1016/j.orgel.2015.07.013
50.
Wei
,
L.
,
Jiang
,
L.
,
Yuan
,
S.
,
Ren
,
X.
,
Zhao
,
Y.
,
Wang
,
Z.
,
Zhang
,
M.
,
Shi
,
L.
, and
Li
,
D.
,
2016
, “
Valence Band Edge Shifts and Charge-Transfer Dynamics in Li-Doped NiO Based p-Type DSSCs
,”
Electrochim. Acta
,
188
, pp.
309
316
. 10.1016/j.electacta.2015.12.026
51.
Sakthivel
,
T.
,
Kumar
,
K. A.
,
Senthilselvan
,
J.
, and
Jagannathan
,
K.
,
2018
, “
Effect of Ni Dopant in TiO2 Matrix on Its Interfacial Charge Transportation and Efficiency of DSSCs
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
3
), p.
2228
. 10.1007/s10854-017-8137-2
52.
Jung
,
E. H.
,
Jeon
,
N. J.
,
Park
,
E. Y.
,
Moon
,
C. S.
,
Shin
,
T. J.
,
Yang
,
T. Y.
,
Noh
,
J. H.
, and
Seo
,
J.
,
2019
, “
Efficient, Stable and Scalable Perovskite Solar Cells Using Poly (3-Hexylthiophene)
,”
Nature
,
567
(
7749
), pp.
511
515
. 10.1038/s41586-019-1036-3
53.
Basu
,
K.
,
Zhang
,
H.
,
Zhao
,
H.
,
Bhattacharya
,
S.
,
Navarro-Pardo
,
F.
,
Datta
,
P. K.
,
Jin
,
L.
,
Sun
,
S.
,
Vetrone
,
F.
, and
Rosei
,
F.
,
2018
, “
Highly Stable Photoelectrochemical Cells for Hydrogen Production Using a SnO2–TiO2/Quantum Dot Heterostructured Photoanode
,”
Nanoscale
,
10
(
32
), pp.
15273
15284
. 10.1039/C8NR02286K
54.
Kehr
,
N. S.
,
Atay
,
S.
, and
Ergün
,
B.
,
2015
, “
Self-Assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications
,”
Macromol. Biosci.
,
15
(
4
), pp.
445
463
. 10.1002/mabi.201400363
55.
Edel
,
J. B.
,
Kornyshev
,
A. A.
,
Kucernak
,
A. R.
, and
Urbakh
,
M.
,
2016
, “
Fundamentals and Applications of Self-Assembled Plasmonic Nanoparticles at Interfaces
,”
Chem. Soc. Rev.
,
45
(
6
), pp.
1581
1596
. 10.1039/C5CS00576K
56.
Zhao
,
Y.
,
Zhou
,
Q.
,
Li
,
Q.
,
Yao
,
X.
, and
Wang
,
J.
,
2017
, “
Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy
,”
Adv. Mater.
,
29
(
6
), p.
1603990
. 10.1002/adma.201603990
57.
Shitta
,
M. B.
,
2018
, “
Photovoltaic Potential of Mimosa pudica-Based Dye for Sensitization and Construction of Organic Solar Cell
,”
Ph.D. Report
,
Department of Mechanical Engineering, University of Lagos
,
Nigeria
.
58.
Gu
,
B.
,
Schemitt
,
J.
,
Chem
,
Z.
,
Llang
,
L.
, and
McCartty
,
J. F.
,
1994
, “
Adsorption and Desorption of Natural Organic Matter on Iron Oxide: Mechanisms and Models
,”
Environ. Sci. Technol.
,
28
(
1
), pp.
38
48
. 10.1021/es00050a007
59.
Cussler
,
E. L.
,
1997
,
Diffussion Mass Transfer in Fluid System
,
Cambridge University Press
,
New York, NY
.
60.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
61.
Swinehart
,
D. F.
,
1962
, “
The Beer-Lambert Law
,”
J. Chem. Educ.
,
39
(
7
), p.
333
. 10.1021/ed039p333
62.
Charbonneau
,
C.
,
Tanner
,
T.
,
Davies
,
M. L.
,
Watson
,
T. M.
, and
Worsley
,
D. A.
,
2016
, “
Effect of TiO2 Photoanode Porosity on Dye Diffusion Kinetics and Performance of Standard Dye-Sensitized Solar Cells
,”
J. Nanomater.
,
2016
, pp.
1
10
. 10.1155/2016/9324858
63.
Abdel-Latif
,
M. S.
,
Abuiriban
,
M. B.
,
El-Agez
,
T.M.
, and
Taya
,
S. A.
,
2015
, “
Dye-Sensitized Solar Cells Using Dyes Extracted From Flowers, Leaves, Parks, and Roots of Three Trees
,”
Int. J. Renewable Energy Res.
,
5
(
1
), pp.
294
298
.
64.
Al-Alwani
,
M. A. M.
,
Al-Mashaan
,
A. S. A.
, and
Abdullah
,
M. F.
,
2019
, “
Performance of the Dye-Sensitized Solar Cells Fabricated Using Natural Dyes from Ixora Coccinea Flowers and Cymbopogon Schoenanthus Leaves as Sensitizers
,”
Int. J. Energy Res.
,
43
(
13
), pp.
7229
7239
.
You do not currently have access to this content.